Studying effects of drive asymmetry on burn asymmetry with proton emission imaging

Fredrick H. Séguin et al., M.I.T.

46th APS DPP Meeting, 2004
Summary:

Low-mode asymmetry in the 3-D burn distribution directly reflects drive asymmetry

- Burn asymmetry amplitude is proportional to drive asymmetry
- Burn images, proton spectra, and x-ray images can provide a self-consistent picture of asymmetric capsule structure at burn time
Collaborators

M.I.T.
Plasma Science
and Fusion Center

J.L. DeCiantis
J.A. Frenje
C.K. Li
J.R. Rygg
C. Chen
R.D. Petrasso

University of Rochester
Laboratory for Laser Energetics

V. Smalyuk
F.J. Marshall
J.A. Delettrez
J. Knauer
D.D. Meyerhofer
S. Roberts
T.C. Sangster

Lawrence Livermore
National Laboratory

K. Mikaelian
H.S. Park

Fredrick H. Séguin et al.
Massachusetts Institute of Technology

46th APS DPP Meeting, 2004
Three orthogonal proton imaging cameras are used at OMEGA.
Information about the spatial distribution of burn is extracted from penumbral images in two ways*

1-D reconstruction:

2-D reconstruction:

Penumbral image

* Séguin et al., RSI 75, 3520 (2004)
Spatial resolution in 2-D reconstructions is limited by noise filtering.

The noise filtering used here results in a Gaussian point-response function parameterized by a radius r_p:

$$e^{-\left(\frac{r}{r_p}\right)^2}$$

$$r_p \approx 15 \mu m \left(\frac{r_s}{30 \mu m}\right)^{4/5} \left(\frac{Y_s}{10^9}\right)^{-1/5}$$
The 2-D point-response function broadens the true structure.

Constrained in shape:

1-D reconstruction:
- Usually close to Gaussian

Unconstrained:

2-D reconstruction:
- (resolution > 15 µm)
A modified 2-D algorithm produces more accurate estimates of source sizes by constraining the source to belong to a family of functions:

- Circular, with Gaussian radial profile
- Elliptical, with Gaussian radial profiles
- 2 ellipses, with Gaussian radial profiles
The cameras were used to study burn asymmetry resulting from imposed laser drive asymmetry at OMEGA.
Prolate drive

OMEGA
Shots 35172,3
Three different axially-symmetric laser drive schemes have been compared.
Different drive asymmetries generate different burn asymmetries

Polar view

- Prolate: shots 35172, 35173
- Symmetric: shot 36020
- Oblate: shot 35174

Equator view

- Prolate: shots 35172, 35173
- Symmetric: shot 36020
- Oblate: shot 35174
Constrained reconstructions result in better estimates of actual sizes

<table>
<thead>
<tr>
<th>Prolate</th>
<th>Symmetric</th>
<th>Oblate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-200 -100 0 100 200 µm
Burn asymmetry $\equiv \frac{L_{\text{max}} - L_{\text{min}}}{L_{\text{max}} + L_{\text{min}}}$
Increasing drive asymmetry \rightarrow increasing burn asymmetry \rightarrow decreasing yield

- Burn asymmetry
- $\langle \delta I \rangle / \langle I \rangle$
- Prolate
- Oblate
- Symmetric

- D^3He yield
- $\langle \delta I \rangle / \langle I \rangle$
- Prolate
- Oblate
- Symmetric
Burn image structure is roughly consistent with x-ray-image-implied fuel-shell interface

Large emission peak shows hot shell material near axis

See Reuben Epstein et al., H01.013, x-ray image simulation

xrfc at peak burn (~ 4 – 5 keV)
shot 35173

D3He burn
shots 35172,3
Proton spectra provide additional information and strong constraints on capsule structure.
A self-consistent interpretation of structure involves two emission sources and cool material around the waist.
Summary:

Low-mode asymmetry in the 3-D burn distribution directly reflects drive asymmetry

- Burn asymmetry amplitude is proportional to drive asymmetry
- Burn images, proton spectra, and x-ray images can provide a self-consistent picture of asymmetric capsule structure at burn time