Testing Hydrodynamic Equivalence of D$_2$ and 3He mixtures

- $20 \mu m$ CH
- $435-465 \mu m$
- 15 atm D$_2$ equivalent

DDn Yield

- $D_2(15)$
- $D_2(6)^3He(12)$

hydro-equivalent scaling
1D simulation (norm. to exp.)
experimental

J.R. Rygg et al.
MIT - PSFC

46th American Physical Society DPP Meeting
Savannah, GA, Nov 15-19, 2004
Contributors

J.L. DeCiantis, J.A. Frenje, C.K. Li, F.H. Séguin, and R.D. Petrasso
Plasma Science and Fusion Center
Massachusetts Institute of Technology

J.A. Delettrez, S.P. Regan, V.Yu Glebov, V.N. Goncharov,
J.P. Knauer, D.D. Meyerhofer, P.B. Radha, T.C. Sangster
Laboratory for Laser Energetics
University of Rochester
Summary

- "Surrogate" fuels with advantageous nuclear properties (such as \(\text{D}_2 \) or \(\text{D}^3\text{He} \) for DT) are often used to study implosion dynamics.

- Interpretation of surrogate implosions typically assumes that fuels can be interchanged with minimal impact on implosion hydrodynamics.

- An investigation of hydrodynamic equivalence using different fill compositions was carried out using a mixture of \(\text{D}_2 \) and \(^3\text{He} \).

- The experimental yield scaling was found to deviate from that expected assuming hydrodynamic equivalence.
Hydrodynamically equivalent fills have the same total number of particles (e + i) on full ionization

Fill pressures for different fill compositions are chosen such that there are the same total number of particles (e + i) when the gas is completely ionized.

For $D_2(X)^3He(Y)$ filled capsules, hydro-equivalence to a $D_2(15)$ capsule requires:

$$\frac{X}{15\text{ atm}} + \frac{Y}{20\text{ atm}} = 1$$

The mass density is the same for all such mixtures.

Driven with a 23 kJ, 1 ns square pulse

15 atm D_2 equivalent
Yields from two nuclear reactions are used to diagnose such implosions

\[\text{D + D} \Rightarrow {^3}\text{He}(0.8) + n(2.5 \text{ MeV}) \]
\[Y_{DDn} \propto X^2 \]

\[\text{D + } ^3\text{He} \Rightarrow \alpha(3.6) + p(14.7 \text{ MeV}) \]
\[Y_{D3He} \propto X \times Y \]
For hydrodynamically-equivalent implosions, DD-n yield scales as the square of D$_2$ fill pressure.

Anticipated Yield Scaling

\[Y_{DDn} \propto X^2 \]
Yields have been normalized to the fill composition

\[Y_{\text{norm}} = Y_{\text{DDn}} \times (15 \text{ atm}/X)^2 \]
Experimental yields deviate from the expected "hydro-equivalent" yield scaling

$$Y_{\text{norm}} = Y_{DDn} (15 \text{ atm}/X)^2$$
1D simulations also deviate from the expected "hydro-equivalent" yield scaling

\[Y_{\text{norm}} = Y_{\text{DDn}} \times (15 \text{ atm}/X)^2 \]

![Graph showing DDn Yield (norm) with hydro-equivalent, lilac (norm), and experimental data points.](image)
Experimental D³He yields also deviate from the expected "hydro-equivalent" yield scaling

\[Y_{\text{norm}} = Y_{\text{DDn}} \left(\frac{15 \text{ atm}}{X} \right)^2 \]

\[Y_{\text{norm}} = Y_{\text{d³He}} \frac{6 \text{ atm} \times 12 \text{ atm}}{X \times Y} \]

- DD-n Yield (norm)

- D³He-p Yield (norm)
These yield trends are not due to differences in DD-n burn-averaged ion temperature

\[Y_{\text{norm}} = Y_{\text{DDn}} (15 \text{ atm}/X)^2 \]

A 0.5 keV difference is needed to produce such a difference in yields
The observed yield trends could be due to higher convergence for D-rich fill

DD-n Yield (norm)

\[Y_{\text{norm}} = Y_{\text{DDn}} \times (15 \text{ atm}/X)^2 \]

A simple density calculation to explain yield trends:

\[\rho_{\text{D}_2} = 1.25 \rho_{\text{D}_3\text{He}} \]

…implies a higher convergence for pure D\(_2\) fills over 1 to 1 D\(^3\)He fills:

\[C_{r,\text{D}_2} = 1.08 C_{r,\text{D}_3\text{He}} \]
1D simulations suggest that shock "preheating" leads to lower convergence for lower D₂ fraction.
1D simulations suggest that shock "preheating" leads to lower convergence for lower D₂ fraction.

\[Y_{\text{norm}} = Y_{\text{DDn}} \left(\frac{15 \text{ atm}}{X} \right)^2 \]

\[Y_{\text{norm}} = Y_{\text{D³He}} \frac{6 \text{ atm} \times 12 \text{ atm}}{X \times Y} \]
Nuclear measurements are a sensitive probe of hydrodynamic equivalence

- An investigation of hydrodynamic equivalence using different fill compositions was carried out using a mixture of D$_2$ and 3He

- Observed trends of DD-n and D3He yields differed significantly from those anticipated based on hydrodynamic-equivalence and on 1-D simulations

- The yield trends are not caused by a trend in ion temperature

- An 8% difference in the convergence ratio is sufficient to explain the experimental yield scaling