Effect of Temporal Density Variation and Convergent Geometry on Nonlinear Bubble Evolution in the Classical Rayleigh–Taylor Instability

D. Li and V. N. Goncharov
University of Rochester
Laboratory for Laser Energetics

46th Annual Meeting of the American Physical Society
Division of Plasma Physics
Savannah, GA
15–19 November 2004

\[\rho = \text{const} \]

\[\rho = \rho_0 e^{-0.4t} \]

Spherical

Planar

\[U_b (\mu m/ns) \]

Time (ns)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Summary
Layzer’s model has been extended to include temporal variation in density and convergence effect

- Layzer’s model describes the nonlinear bubble evolution in planar geometry with constant density.

- Temporal density variation and convergent effect are important in ICF implosions.

- Density variation modifies the asymptotic bubble growth to
 \[\eta_0 = U_L \int \frac{\rho(t')}{\rho(t)} \, dt', \quad U_L = \sqrt{\frac{g}{3k}}. \]

- Extension of Layzer’s model to spherical geometry leads to
 \[\eta_0 \rightarrow r_0(t) \int \frac{\bar{U}_L(t')}{r_0(t')} \, dt', \quad \bar{U}_L(t) = \sqrt{\frac{gr_0(t)}{\ell}} \text{ for a solid sphere.} \]
Layzer’s nonlinear RT model is only valid for planar geometry

\[\Phi = a(t) \cos(kx)e^{-k(y-\eta_0)} \]

- \(U = \nabla \Phi \)
- \(\nabla^2 \Phi = 0 \)

\[\sqrt{\frac{g}{3k}} \]

Expansion near bubble tip

\[\eta = \eta_0 + \eta_2 x^2 \]

Bubble curvature \(R = \frac{1}{2n_2} \)

Bubble amplitude \(\eta_0 \)

Bubble velocity \(U_b = \dot{\eta}_0 \)

Bubble tip velocity saturates at \(\sqrt{g/3k} \)

- \(g = 100 \) (\(\mu m/\text{ns}^2 \))
- \(k = 0.5 \) (\(\mu m^{-1} \))
Density variation can be easily included in the model

\[\nabla^2 \Phi = -\frac{\dot{\rho}}{\rho} \]

\[\Phi = a(t) \cos(kx) e^{-k(y-\eta_0)} - \frac{\dot{\rho}}{\rho} \frac{y^2}{2} \]

Asymptotic solution

\[\eta_0 \lim_{t \to \infty} \frac{\sqrt{g}}{3k} \int \rho(t') dt' \]
The Layzer’s model is extended to include the spherical convergence effect

- **Solid sphere:** \(\rho r_0^3 = \text{const} \)

- \(\Phi = a(t) r^{\ell} P_\ell(\cos \theta) - \left(\frac{\ddot{r}_0}{3} + \frac{\rho \dot{\rho}}{\rho} \right) \frac{r_0^2}{r} - \frac{r_0^2}{r} \frac{\dot{\rho}}{\rho} \)

- \(\frac{\partial \Phi}{\partial r} = \dot{r}_0 \) at equilibrium

- \(\frac{d}{dt} \left(\frac{\eta_2}{r_0} \right) = \frac{d}{dt} \left(\frac{\eta_0}{r_0} \right) \left(2 \ell \frac{\eta_2}{r_0} - \frac{\ell(\ell+1)}{4} \right) \)

- \(\frac{\eta_2}{r_0} \xrightarrow{t \to \infty} \frac{\ell+1}{8} \)

- \(-\frac{1}{r_0^2} \frac{d}{dt} \left(r_0^2 \xi \right) + \ell \xi^2 = -\frac{\ddot{r}_0}{r_0}, \quad \xi = \frac{\eta_0}{r_0} \)

- \(\dot{\xi} = -\sqrt{-\frac{\ddot{r}_0}{\ell r_0}}, \quad \ell >> 1 \)
Asymptotic analysis agrees with an exact solution of the model

- $\ell = 200$, $g = 100 \left(\frac{\mu m}{ns^2} \right)$, $r_0(0) = 400 \left(\mu m \right)$
- $r_0(t) = r_0(0) - \frac{gt^2}{2}$, $\eta_0(0) = -10^{-3} \left(\mu m \right)$

\[\eta_0 \rightarrow r_0(t) \int \frac{\tilde{U}_L(t')}{{r_0(t')}} \, dt', \quad \tilde{U}_L(t) = \sqrt{\frac{gr_0(t)}{\ell}} \]
Even though bubble amplitude decreases in solid sphere, $\frac{\eta_0}{r_0}$ always increases.

\[
\ell \frac{\eta_0}{r_0} > \frac{\eta_0(t_1)}{r_0(t_1)} < \frac{\eta_0(t_2)}{r_0(t_2)}
\]
If $\rho r_0^3 \neq \text{const (shell)}$, asymptotic amplitude is determined by a first-order nonlinear differential equation

$$\ell \ddot{\xi}^2 - \dot{m}\left[\xi^2 \left(1 + 2(\ell + 1)\frac{\ddot{\xi}}{m}\right)^2 - 2\frac{\ddot{\xi}}{r_0} + \frac{\ddot{r}_0}{r_0} m^2\right] = 0$$

$$\xi = \rho r_0^2 \eta_0, \quad m(t) = \rho(t) r_0^3(t),$$

$$\eta_2 \rightarrow \frac{\ell + 1}{8}$$

$$r_0(t) = 400 - \frac{100t^2}{2}, \quad \rho(t) = \rho_0 e^{\epsilon t}$$
Bubble amplitude in spherical geometry does not decrease with radius

\[U_b^{\text{planar}} = \sqrt{\frac{g}{k}} \quad ? \quad U_b^{\text{spherical}} = \sqrt{g \frac{r_0(t)}{\ell}} \]

\[\rho = \text{constant} \]

• Similar results are derived for cylindrical geometry in Reference 1.

\[Y. \text{Yedvab et al., presented at the 6th IWPCTM, Marseille, France, 18–21 June 1997, p. 528.} \]
Summary/Conclusions

Layzer’s model has been extended to include temporal variation in density and convergence effect

• Layzer’s model describes the nonlinear bubble evolution in planar geometry with constant density.

• Temporal density variation and convergent effect are important in ICF implosions.

• Density variation modifies the asymptotic bubble growth to

\[\eta_0 = U_L \int \frac{\rho'(t')}{\rho(t)} \, dt' / \rho(t), \quad U_L = \sqrt{\frac{g}{3k}}. \]

• Extension of Layzer’s model to spherical geometry leads to

\[\eta_0 \rightarrow r_0(t) \int \frac{\bar{U}_L(t')}{r_0(t')} \, dt', \quad \bar{U}_L(t) = \sqrt{\frac{g r_0(t)}{\ell}} \quad \text{for a solid sphere.} \]