Stopping, Straggling and Blooming of Directed Energetic Electrons in Hydrogenic Plasmas

$\rho = 300 \text{ g/cm}^3$

$T_e = 5 \text{ keV}$

$\Delta E \sim 40\%$

1 MeV electron

Region of uniform energy deposition

Region of enhanced linear energy deposition

46th Annual Meeting of the Division of Plasma Physics
Savannah, GA, Nov.15-19, 2004
Multiple scattering significantly impacts electron energy loss, straggling, and blooming in plasmas

- Scattering and energy loss are *inextricably* coupled
- The mutual interaction among energy loss, straggling and blooming leads to a region of enhanced linear energy deposition
- Both straggling and blooming are proportional to the square root of the penetration when $\Delta E > 40\%$ for 1 MeV electrons
- Multiple scattering eventually dominates over all other sources of beam divergence
Multiple scattering is relevant to physics of current interest

- Fundamental physics
- **Fast ignition**
 - Electron penetration and straggling
 - Energy deposition profile
 - Beam blooming
- Pre-heat
- Astrophysics
 (e.g. relativistic astrophysical jets)

Supported in part by DOE, LLE, LLNL and by the Fusion Science Center for Extreme States of Matter and Fast Ignition Physics at UR
The angular and spatial distributions are calculated from the integro-differential diffusion equation

\[
\frac{\partial f}{\partial s} + v \cdot \nabla f = N \int [f(x, v', s) - f(x, v, s)] \sigma |v - v'| dv'
\]

- Angular distribution \(\rightarrow\) mean deflection angle, \(\langle \cos\theta \rangle\)

\[
f(\theta, s) = \frac{1}{4\pi} \sum_{\ell=0}^{\infty} (2\ell + 1) P_\ell(\cos \theta) \exp \left(-\int_0^s \kappa_\ell(s') ds' \right)
\]

- Longitudinal distribution \(\rightarrow\) penetration and straggling

- Lateral distribution \(\rightarrow\) beam blooming
The penetration is reduced by ~ 30% compared to the range, and energy transfer is enhanced towards the end of the penetration.

\[\frac{dE}{d\rho R} = \frac{dE}{d\rho R} \cdot \frac{1}{\langle \cos \theta \rangle} = \frac{dE}{ds} \]

1 MeV electrons; \(\rho = 300 \, \text{g/cm}^3; \, T_e = 5 \, \text{keV} \)
With a mean penetration of $\sim 13.8 \, \mu m$, multiple scattering results in longitudinal straggling of $\pm \sim 3 \, \mu m$ and lateral blooming of $\pm \sim 5 \, \mu m$.

Longitudinal straggling

$$
\Sigma_R(E) = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}
$$

Lateral blooming

$$
\Sigma_B(E) = \sqrt{\langle y^2 \rangle}
$$

Where: $\langle y \rangle = \langle z \rangle = 0$

1 MeV electrons; $\rho = 300 \, g/cm^3$; $T_e = 5 \, keV$
Straggling smears out the effective Bragg peak

When $\Delta E \sim 90$
- $\langle x \rangle \sim 13.8 \mu m$
- $\Sigma_R \sim 3 \mu m$

Including the effects of blooming would effectively increase (decrease) Σ_R for values less (greater) than the mean penetration
When $\Delta E > 40\%$, both straggling and blooming are approximately proportional to the square root of the penetration.

Assumption of uniform energy deposition is approximately justified when $\Delta E < 40\%$, for which little straggling and blooming occurs.

\[
\begin{align*}
\Sigma_B &= 3.39\langle x \rangle^{1/2} - 8.24 \\
\Sigma_R &= 2.25\langle x \rangle^{1/2} - 5.82
\end{align*}
\]
The mutual interaction between energy loss, straggling and blooming leads to a region of enhanced linear energy deposition.

- Reduce penetration $\sim 30\%$
- Cause divergence $\pm \sim 5\ \mu m$
- Increase straggling $\pm \sim 3\ \mu m$
- Change energy deposition profile

Multiple scattering is critical for setting the requirements of Fast Ignition.

$\rho = 300\ \text{g/cm}^3$
$T_e = 5\ \text{keV}$
For fast ignition, multiple scattering must *ultimately* dominate over all other mechanisms in affecting energy deposition and beam divergence.

When \(\frac{n_b}{n_e} > 10^{-2} \): Weibel-like instabilities +

When \(\frac{n_b}{n_e} < 10^{-2} \): Multiple scattering

→ the interaction can be envisioned as the linear superposition of individual, isolated electrons interacting with the plasma.

Two conditions for blooming and straggling become significant:

1. \(\frac{n_b}{n_e} < 10^{-2} \)
2. \(\Delta E > 40\% \)
For relativistic astrophysical jets, electron energies ~ 1 MeV or greater

These calculations are relevant to other current problems, such as preheat in ICF, or relativistic astrophysical jets.

$\rho R \ (\text{FI}) \sim \rho R \ (\text{jet}) \sim 0.4 \text{ g/cm}^2$

- $R \ (\text{FI}) \sim 10 \ \mu\text{m} \sim 10^{-3} \text{ cm}$
- $R \ (\text{Jet}) \sim 10^4 \text{ light years} \sim 10^{22} \text{ cm}$
Multiple scattering significantly impacts electron energy loss, straggling, and blooming in plasmas

- Scattering and energy loss are *inextricably* coupled
- The mutual interaction among energy loss, straggling and blooming leads to a region of enhanced linear energy deposition
- Both straggling and blooming are proportional to the square root of the penetration when $\Delta E > 40\%$ for 1 MeV electrons
- Multiple scattering eventually dominates over all other sources of beam divergence