Direct-Drive ICF Implosions with Picket-Fence Pulse Shapes

J. P. Knauer
University of Rochester
Laboratory for Laser Energetics

45th Annual Meeting of the American Physical Society
Division of Plasma Physics
Albuquerque, NM
27–31 October 2003

University of Rochester
Laboratory for Laser Energetics

J. A. Frenje, C. K. Li, R. D. Petrasso, and F. H. Séguin

Plasma Science and Fusion Center,
Massachusetts Institute of Technology
Summary

Shaped pulses have been used to control the seed amplitude of the deceleration-phase instability

- First experiments showed significant increase in neutron yield with a picket pulse due to reduction of the deceleration-phase instability initial amplitude.

- Experimental yield/1-D simulation yield (YOC) increases with greater separation between the ablation and gas interfaces.

- YOC also improves when ablation interface growth is reduced.
A 120-ps FWHM picket pulse before the drive pulse showed increased fusion yields.
The Rayleigh–Taylor instability at the shell–gas interface during deceleration strongly affects fusion yield

- Deceleration interface is classically unstable.

\[A = A_{\text{initial}} e^{\gamma t} \]

\[A_{\text{initial}} = \sqrt{A_{\text{inner}}^2 + A_{\text{feedthrough}}^2} \]

\[A_{\text{feedthrough}} = A_{\text{ablation}} e^{-k\Delta CH} \]

- Shaped-pulse implosions will study both \(A_{\text{ablation}} \) and \(\Delta CH \).
CH targets were imploded using laser pulse shapes with and without picket pulses.

δt varied between 730 and 960 ps

I_{foot} varied between 1 and 6 TW
Picket timing relative to the drive pulse (δt) changes the distance between the ablation and gas interfaces, ΔCH.

- Large δt – Decaying shock wave reaches rear of shell before compression wave.
- Small δt – Compression wave catches decaying shock wave before rear of shell.

- v_f is larger when the compression wave overtakes the decaying shock wave in the shell.
- ΔCH is larger and continues to grow.
Experimental yield/1-D yield (YOC) is sensitive to the timing of the picket pulse relative to the drive pulse.

\[\Delta CH \equiv \left\langle r_{\text{ablation}} - r_{\text{gas}} \right\rangle_t \]

- 4-atm-gas-filled targets travel farther during the deceleration phase.
Both picket and non-picket pulse shapes were used to change the ablation-interface amplitude, A_{ablation}.

- Separation of ablation and shell–gas interfaces $= 18 \pm 2 \ \mu m$

\[
A_{\text{bubble}} = a_0 e^{\gamma t}
\]

\[
\gamma = 0.9 \sqrt{\frac{kg}{(1 + kL)}} - 1.7 \text{ kV}_a
\]
Acceleration-phase stability growth affects the ratio of the experimental yield to the 1-D simulation yield.

- Separation of ablation and shell–gas interfaces, $\Delta_{CH} = 18 \pm 2 \mu m$

- Bubble amplitude is calculated using postprocessor\(^1\) to 1-D code *LILAC*.
- Calculation includes 1-Thz, 2-D SSD and interface roughness.

Shaped pulses have been used to control the seed amplitude of the deceleration-phase instability

- First experiments showed significant increase in neutron yield with a picket pulse due to reduction of the deceleration-phase instability initial amplitude.

- Experimental yield/1-D simulation yield (YOC) increases with greater separation between the ablation and gas interfaces.

- YOC also improves when ablation interface growth is reduced.