Simulation of Enhanced Neutron Production in OMEGA EP Cryogenic Implosions

J. A. Delettrez, P. B. Radha, C. Stoeckl, S. Skupsky, and D. D. Meyerhofer
University of Rochester
Laboratory for Laser Energetics

45th Annual Meeting of the American Physical Society
Division of Plasma Physics
Albuquerque, NM
27–31 October 2003
Summary

Interaction of the OMEGA EP beams with an imploding cryogenic capsule produces enhanced yield

- The OMEGA EP laser will add two short-pulse (2.5 kJ at 20 ps), high-intensity beams (>10^{19} \text{ W/cm}^2) to OMEGA to study the physics of fast ignition.

- A relativistic electron model had been added to the multidimensional hydrocode \textit{DRACO}.

- Stagnation is modified by shocks driven by the electron-heated, high-density shell, depending on the timing of the beam:
 - an extra “spherical” kick at time of low shell $\rho R (<0.3 \text{ g/cm}^2)$
 - one-sided displacement at peak shell $\rho R (>0.4 \text{ g/cm}^2)$

- The total DT yield reaches 3×10^{15}, permitting the development of near-ignition neutron diagnostics for the NIF.
A direct-drive target was designed at OMEGA energy (25 kJ) to give > 300 g/cm³ densities.
Fast-ignitor mass densities are reached in 1-D simulation

A 1-MeV electron has a range of about 0.4 g/cm².
Simulations were carried out with a 20-ps, 1-MeV electron beam with total energies of 400 J and 1 kJ.

- Electrons are instantaneously transported in a straight line through the target.
- They give their energy to the background electrons using a penetration depth formulation applied in each zone.

![Diagram of electron beam interaction](image-url)
At the low density (250 g/cm3) the ignitor beam heats equally both sides of the core.
At the peak of the density (500 g/cm3) the ignitor beam heats mostly one side of the target.
Timing the electron beam at the time of peak shell density produces a higher yield. The increased neutron rate can be easily diagnosed.

- For 1 kJ, $Y = 3.2 \times 10^{15}$
- For 1 kJ, $Y = 1.8 \times 10^{15}$
- For 400 J, $Y = 1.1 \times 10^{15}$
- For 400 J, $Y = 1.0 \times 10^{15}$
- No fast electrons, $Y = 5 \times 10^{14}$

The increased neutron rate can be easily diagnosed.
At peak neutron rate, the beam-heated region produces the enhanced neutron yield.

No ignitor beam

- Mass density (g/cm³)
 - 0.0
 - 7.0

400 J at low density

- Ion temperature (keV)
 - 0.0
 - 7.0

- Neutron rate (1/zone/s)
 - 10^{20}
 - 10^{22}

TC6453
The ignitor beam causes neutrons to be produced over a large volume.
Summary/Conclusions

Interaction of the OMEGA EP beams with an imploding cryogenic capsule produces enhanced yield

- The OMEGA EP laser will add two short-pulse (2.5 kJ at 20 ps), high-intensity beams ($>10^{19}$ W/cm2) to OMEGA to study the physics of fast ignition.

- A relativistic electron model had been added to the multidimensional hydrocode DRACO.

- Stagnation is modified by shocks driven by the electron-heated, high-density shell, depending on the timing of the beam:
 - an extra “spherical” kick at time of low shell $\rho R (<0.3$ g/cm2)
 - one-sided displacement at peak shell $\rho R (>0.4$ g/cm2)

- The total DT yield reaches 3×10^{15}, permitting the development of near-ignition neutron diagnostics for the NIF.