SBS in Long-Scale-Length Plasmas for Direct-Drive ICF: Comparing Experiments with Simulations

W. Seka
University of Rochester
Laboratory for Laser Energetics

44th Annual Meeting of the American Physical Society
Division of Plasma Physics
Orlando, FL
11–15 November 2002

Laboratory for Laser Energetics
University of Rochester

H. Baldis

Lawrence Livermore National Laboratory
and U. C. Davis, Department of Applied Science
Summary

Seemingly contradictory SBS backscatter and sidescatter results find resolution in simulations

- SBS backscatter and sidescatter data show red- and blue-shifted components.
 - Simulations show the same feature provided EM seeding is included.

- Some data show early quenching of SBS while others do not
 - Hydro and LPI simulations show that plasma dynamics is the primary reason for these observations.

- Hot-spot origin of SBS is seen experimentally via polarization smoothing.
Outline

• Motivation

• LPI experiments
 – Experimental observations
 – 2-D hydrocode predictions
 – LPI simulations

• Discussion of results

• Summary
Multiple-beam experiments are a special case of single-beam experiments

- Multiple obliquely incident, high-\(f\)-number beams display some of the same features as single lower-\(f\)-number beams

- Multiple beams allow separation of EM seeding from symmetrically located beams via reflections from \(n_c\).

Heating Beams

Formation beams

Interation beams
SBS at normal incidence with slowly evolving velocity “bump” exhibits blue-shifted SBS over the entire pulse that is sensitive to beam smoothing.
The fast-evolving velocity bump leads to early quenching of the blue SBS feature while the EM-seeded red feature disappears without seed.

- Red component is suppressed due to lack of EM seed.
- Blue component – pure backscatter in SBS underdense region.
SBS reflectivities with and without polarization smoothing indicate that SBS occurs primarily in the hottest speckles.
Summary/Conclusions

Seemingly contradictory SBS backscatter and sidescatter results find resolution in simulations

• SBS backscatter and sidescatter data show red- and blue-shifted components.
 – Simulations show the same feature provided EM seeding is included.

• Some data show early quenching of SBS while others do not
 – Hydro and LPI simulations show that plasma dynamics is the primary reason for these observations.

• Hot-spot origin of SBS is seen experimentally via polarization smoothing.