Fast-Ignitor Research at the Laboratory for Laser Energetics

D. D. Meyerhofer
Director, Experimental Division
University of Rochester
Laboratory for Laser Energetics

44th Annual Meeting of the American Physical Society
Division of Plasma Physics
Orlando, FL
11–15 November 2002
Collaborators

Laboratory for Laser Energetics
University of Rochester

R. Stephens
General Atomics
San Diego

K. Tanaka
Institute of Laser Engineering
Osaka, Japan

S. Hatchett
Lawrence Livermore National Laboratory
Summary

LLE is studying the direct-drive fast-ignition concept experimentally and theoretically

• LLE performs direct-drive (DD) cryogenic implosions that may lead to areal densities of ~350 mg/cm².

• LLE (with GA, ILE, LLNL) is beginning to study fuel assembly for fast-ignition (FI) targets:
 – Initial DD cone target implosions (empty)
 – Development of DD cone target with gas fill for diagnostics
 – Design of non-cone, high-areal-density implosions (cryo fuel)

• LLE has proposed to add high-energy petawatt capability for integrated FI experiments: OMEGA EP.
A multi-year science and engineering effort (with GA) was required to produce a reliable and precise cryogenic target experimental capability.
OMEGA can assemble ~ 1 kJ of fast-ignition-relevant cryogenic fuel at high density.

Expect burn-averaged ρR_{fuel} to approach 150 mg/cm2 in FY03 and > 300 mg/cm2 in the next 2 to 3 years.
A 1-kJ, 1-MeV electron beam raises the ion temperature in the high-density fuel shell to \(~10\) keV

Ion-temperature contours

Neutron burn rate for D₂ implosion

- 400 J, 1-MeV beam: $Y = 2.08 \times 10^{13}$
- No fast electrons: $Y = 3.42 \times 10^{12}$
- 1-kJ, 1-MeV beam: $Y = 1.13 \times 10^{13}$

DRACO simulations
Integrated cryogenic DD FI experiments would validate/compare both channeling and cone concepts on a single facility.

- Dedicated program
- High throughput
- Proven diagnostics
- Proven cryogenics

Neutronics

Charged-particle spectroscopy

Direct-drive DT cryo capsules and slide cone targets

CryoNTD

Petawatt beam (EP upgrade proposal)

X-ray imaging

CR-39 track data
LLE is beginning to implode direct-drive cone targets on OMEGA

- Cone target implosions have shown encouraging performance.*
- LLE will commence imploding cone targets in the near future:
 - Initially, empty shells with gold cones will be used.
 - Improved target fabrication techniques will allow gas-filled cone targets to be imploded.
 - In the future, cryogenic cone targets will be studied and may be imploded.

Fuel assembly experiments with cone-focused targets have begun on OMEGA

Direct-drive cone targets shot on OMEGA in FY02 (LLNL, GA)

Raw framing camera images: Top shows early in time, bottom near stagnation.

Note that near stagnation, the tip of the Au cone has started to disappear.

Pinhole camera (H8)
A new high-energy petawatt capability at OMEGA next to the existing 60-beam facility will allow integrated FI experiments

- Two short-pulse, 2 ~ 3-PW, 2.6-kJ beams
- Up to four long-pulse (10-ns) UV beams with ~6.5 kJ each
- NIF-like staging
- Integrated experiments with OMEGA or in a dedicated target chamber
- < 2-h shot cycle
By tailoring the DT-ice distribution it should be possible to optimize the fuel assembly for direct-drive FI on the NIF.

Low-k plastic inserts modify isotherm.

“A cone” target

CH/CD

Plastic “thermal breaks” to prevent gold cone from affecting ice isotherm.

A nonspherical copper-layering sphere creates a “thin ice” region at poles where target is warmest.

Modify thermal environment to create low-ℓ-mode variation.
Integrated direct-drive FI experiments could be carried out on the NIF in indirect-drive configuration.

The penalty from asymmetric illumination may be mitigated by the clever use of phase plate design, beam pointing, pulse shaping, and ice layer/capsule shimming.
An integrated test on OMEGA EP will demonstrate the physics of direct-drive fast ignition.

Driver energy = \frac{1}{\eta_c \eta_{\text{hydro}}} \frac{4\pi (\rho r)^3}{3\rho^2} \epsilon_f

\text{EFI} > 140 \eta_c \frac{100^{1.8}}{\rho} \text{kJ}

Modifications to the NIF for fast ignition by direct drive will be modest.
Summary/Conclusions

LLE is studying the direct-drive fast-ignition concept experimentally and theoretically

- LLE performs direct-drive (DD) cryogenic implosions that may lead to areal densities of ~350 mg/cm².

- LLE (with GA, ILE, LLNL) is beginning to study fuel assembly for fast-ignition (FI) targets:
 - Initial DD cone target implosions (empty)
 - Development of DD cone target with gas fill for diagnostics
 - Design of non-cone, high-areal-density implosions (cryo fuel)

- LLE has proposed to add high-energy petawatt capability for integrated FI experiments: OMEGA EP.