Improved Performance of Direct-Drive ICF Target Designs with Adiabat Shaping Using an Intensity Picket

V. N. Goncharov
University of Rochester
Laboratory for Laser Energetics

44th Annual Meeting of the American Physical Society
Division of Plasma Physics
Orlando, FL
11–15 November 2002
Adiabat shaping produced by an intensity picket significantly improves target stability

Summary

• A technique is proposed to reduce the perturbation growth without compromising the target yield.

• Shaping the adiabat of the main fuel and ablator reduces both seeding and the growth of the Rayleigh–Taylor instability.

• The adiabat is shaped using an intensity picket that launches a decaying shock into the shell.

• The shock places the outer portion of the shell (ablator) on the higher adiabat, keeping the inner part (main fuel) on the lower adiabat.

• The stabilizing effect of the adiabat shaping is confirmed both theoretically and experimentally.
Outline

• Importance of the shell adiabat for the target yield and shell stability
• Adiabat shaping using an intensity picket
• Improved-performance direct-drive target designs for NIF and OMEGA
• Reduction of the laser imprint and RT growth rates due to the picket
• Additional instabilities created by adiabat shaping
• Main results of adiabat-shaping experiments
Shell stability and compressibility depend on the adiabat

- Minimum energy required for ignition: $E_{\text{min}} \sim \alpha^{1.88}$
- Rayleigh–Taylor instability growth $\gamma = \alpha_{RT} (\text{kg})^{1/2} - \beta_{RT} k V_a$

\[\alpha = \frac{P}{P_{\text{Fermi}}} \]
\[V_a \sim \alpha^{3/5} \]

Adiabat shaping is done using an intensity picket

- \(t = 0 \) Picket creates a strong shock
- \(t = t_p \) Rarefaction wave (RW) is launched at \(t = t_p \).
- \(t = t_{rw} \) RW meets the shock
- \(t > t_{rw} \) Shock strength decreases in time

Calculations show

\[
\frac{p_s}{p_0} \approx \frac{\alpha_s}{\alpha_f} \approx \left(\frac{t - t_p}{t_{rw} - t_p} \right) \frac{\sqrt{2\gamma(\gamma-1)}}{2\gamma-1}
\]

valid for \(\gamma > 1.2 \).
Numerical simulations confirm the shock decaying rate

The 300-μm-DT foil is driven by 500-ps, 100-TW square pulse.

\[
\frac{p_s}{p_0} \approx \frac{\alpha_s}{\alpha_f} \approx \left(\frac{t - t_p}{t_{rw} - t_p} \right)^{-0.64}, \quad \gamma = 5/3
\]
The adiabat at the ablation front depends on the picket intensity and picket width.

For $\gamma = 5/3$:
\[
\alpha = \alpha_f \left[1.5 \left(\frac{m}{m^*} - 1 \right) + 1 \right]^{-0.94}
\]
\[
\alpha_f = \alpha_b \left[1.5 \left(\frac{m_{sh}}{m^*} - 1 \right) + 1 \right]^{+0.94}
\]
\[
m^* \sim \rho_0 U_{sh} t_p
\]

Picket optimization gives $t_p (ns) \approx 10^{-3} \Delta_0 (\mu m) / \sqrt{\alpha_b}$

Pressure$_{picket}$ (Mbar) $\approx 16 \alpha_b$

$t_p \sim 50$ ps for OMEGA; $t_p \sim 200$ ps for NIF

pressure ~ 50–60 Mbar; $\alpha_b = 3$
A shaped-adiabat ignition target has been designed for the NIF facility

- CH 17 µm
- DT ice 290 µm
- 1660 µm

- FWHM = 200 ps
- $P_{\text{picket}} = 350$ TW
- $\rho R = 1.45$ g/cm²
- Gain = 55
Greater shell stability is predicted for high-performance OMEGA cryogenic target designs with an intensity picket.

![Diagram of target design with CH 5 μm and DT ice 65 μm layers, 430 μm total thickness.]

<table>
<thead>
<tr>
<th></th>
<th>CH 5 μm</th>
<th>DT ice 65 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 5 μm</td>
<td>430 μm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Picket</th>
<th>CH 5 μm</th>
<th>DT ice 65 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>330</td>
<td>305</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y (× 10^{14})</td>
<td>6.5</td>
<td>6</td>
</tr>
</tbody>
</table>

| A_{bubble}/Th (%)^{1} | >100 | 55 |

Stabilizing effects of the adiabat shaping were numerically tested on the “all-DT,” $\alpha = 3$ OMEGA target design.

Two pulse shapes were considered.
The intensity picket reduces both the growth rate and laser imprint1

- Imprint simulation using 2-D Lagrangian code ORCHID

1% laser-intensity modulations; no SSD

For DT foils2 $\gamma = 0.94\sqrt{kg} - 2.6$ k\textsubscript{Va}

1T. J. B. Collins, S. Skupsky, Phys. Plasmas 9, 275 (2002).
Mode $\ell = 300$ is totally stabilized in the picket design

Theoretical prediction

ORCHID simulation ($\ell = 300$)

Multimode *ORCHID* simulations demonstrate better stability of the shaped-adiabat design

Imprint simulations: \(\ell = 2–200 \), DPP + PS, 1-THz SSD; OMEGA design

Shell is significantly less distorted in the picket design.
Mode decomposition shows the effect of the picket on the imprint amplitudes and growth rates

Beginning of acceleration
(imprint amplitudes)

Acceleration phase
($\Delta R_a = 70 \ \mu m$)

![Graph showing amplitude vs. mode number for 'No picket' and 'Picket' conditions in the beginning of acceleration and acceleration phase.](image)
The stabilizing effect of the adiabat shaping was studied experimentally using D$_2$-filled plastic shells1

$\alpha = 2$, 33-\mu m-CH shells filled with 3 atm and 15 atm D$_2$ gas

Y_{exp} / Y_{1-D} (%) | 4 | 18 | 3 | 15

1For details see talk FO2.012 by J. Knauer
Summary/Conclusions

Adiabat shaping produced by an intensity picket significantly improves target stability

• A technique is proposed to reduce the perturbation growth without compromising the target yield.

• Shaping the adiabat of the main fuel and ablator reduces both seeding and the growth of the Rayleigh–Taylor instability.

• The adiabat is shaped using an intensity picket that launches a decaying shock into the shell.

• The shock places the outer portion of the shell (ablator) on the higher adiabat, keeping the inner part (main fuel) on the lower adiabat.

• The stabilizing effect of the adiabat shaping is confirmed both theoretically and experimentally.