Neutron Burn History Measurements of D₂ Cryogenic Targets on OMEGA

V. Yu. Glebov
University of Rochester
Laboratory for Laser Energetics

44th Annual Meeting of the American Physical Society Division of Plasma Physics
Orlando, FL
11–15 November 2002
Collaborators

Laboratory for Laser Energetics
University of Rochester

Related Talks:

J. A. Delettrez GO2.004
T. C. Sangster RI1.006
Summary

CryoNTD records the important neutron burn history information for D$_2$ cryogenic implosions on OMEGA

- CryoNTD was built because the NTD system on OMEGA is too insensitive to measure the burn history of D$_2$ cryogenic implosions due to standoff requirements of the Cryogenic Target Handling System.

- CryoNTD has a time resolution \sim 80 ps, absolute timing calibration \sim 40 ps, and a sensitivity of \sim 109 neutrons.

- CryoNTD data is correlated with ice-layer quality (melting or crystallization) at shot time.

- The neutron burn history of the layered D$_2$ cryogenic targets generally agrees with the LILAC calculation.
We built a TIM-based cryoNTD specially for D₂ cryogenic target shots on OMEGA

- **NTD**
 - 0.6-cm scintillator at 20 cm from TCC

- **CryoNTD**
 - 3-cm scintillator at 9 cm from TCC
The cryoNTD setup uses the OMEGA fiducial system as a timing reference.
Cryo NTD sensitivity is about 1×10^9 neutrons

Streak camera image

Shot 27143
$Y = 1.72 \times 10^9$
Absolute timing of the cryoNTD was established with 40-ps accuracy using NTD as a reference.
A layered cryogenic target can be in one of the three stages inside the OMEGA target chamber:

- Heating = Cooling
- Heating > Cooling
- Heating < Cooling

A cryogenic target inside the target chamber is in the layering sphere before the shot.

Transmission of the IR fiber can change up to 10% during insertion into the target chamber.
A “crystallized” cryogenic target has a neutron burn width much wider than predicted by *LILAC*.
A “melted” cryogenic target has a neutron bang time much earlier than predicted by *LILAC*.
A layered cryogenic target has a neutron burn history in general agreement with *LILAC* prediction.
Layered cryogenic target has neutron burn history in general agreement with *LILAC* prediction.
CryoNTD records the important neutron burn history information for D$_2$ cryogenic implosions on OMEGA

• CryoNTD was built because the NTD system on OMEGA is too insensitive to measure the burn history of D$_2$ cryogenic implosions due to standoff requirements of the Cryogenic Target Handling System.

• CryoNTD has a time resolution \sim 80 ps, absolute timing calibration \sim 40 ps, and a sensitivity of \sim 109 neutrons.

• CryoNTD data is correlated with ice-layer quality (melting or crystallization) at shot time.

• The neutron burn history of the layered D$_2$ cryogenic targets generally agrees with the LILAC calculation.