Axisymmetric MHD Equilibria with Arbitrary Flow and Applications to NSTX

T. GARDINER, L. GUAZZOTTO, and R. BETTI
University of Rochester
Laboratory for Laser Energetics

J. MANICKAM
Princeton Plasma Physics Laboratory
Outline

• The code FLOW:
 – the system of equations
 – the numerical solution
• NSTX-like equilibria with toroidal flow
• NSTX-like equilibria with poloidal flow
• Conclusions
The relevant equations

- Continuity:

\[\nabla \cdot (\rho \vec{v}) = 0 \]

- Momentum:

\[\rho \vec{v} \cdot \nabla \vec{v} = \vec{J} \times \vec{B} - \nabla \cdot \vec{P} \]

\[\vec{P} = p_\perp \vec{I} + \Delta B \vec{B} \]

\[\Delta \equiv (p_\parallel - p_\perp)/B^2 \]

- Maxwell equations:

\[\nabla \times (\vec{v} \times \vec{B}) = 0 \]

\[\nabla \cdot \vec{B} = 0 \]
The previous system of equations can be reduced to a “Bernoulli” and a “Grad–Shafranov” equation

- Faraday’s law yields the plasma flow:

 \[\vec{v} = M_{A\theta} \vec{v}_A + R\Omega(\Psi)\hat{\phi} \quad \quad \quad M_{A\theta} = \Phi(\Psi)/\sqrt{\rho} \]

- The \(\phi \)-component of the momentum equation gives an equation for the toroidal component of the magnetic field:

 \[B_\phi R = \frac{I(\Psi) - R^2 M_{A\theta} \sqrt{\rho} \Omega(\Psi)}{1 - M_{A\theta}^2 - \Delta} \]

- The B-component of the momentum equation reduces to a “Bernoulli-like” equation for the total energy along the field lines:

 \[\frac{1}{2} \left(\frac{M_{A\theta} B}{\rho} \right)^2 - \frac{1}{2} \left[R\Omega(\Psi) \right]^2 + W = H(\Psi) \]
The modified Grad–Shafranov equation

- Finally, the $\nabla \Psi$-component of the momentum equation gives a “GS-like” equation:

$$ \nabla \cdot \left[\left(1 - M_{A\theta}^2 - \Delta \right) \left(\frac{\nabla \Psi}{R^2} \right) \right] $$

$$ = - \frac{\partial p_\parallel}{\partial \Psi} - \frac{B_\phi}{R} \frac{dI(\Psi)}{d\Psi} - \vec{v} \cdot \vec{B} \frac{d\Phi(\Psi)}{d\Psi} - R \rho v_\phi \frac{d\Omega(\Psi)}{d\Psi} - \rho \frac{dH(\Psi)}{d\Psi} + \rho \frac{dW}{d\Psi} $$

- $W (\rho, B, \Psi)$ is the enthalpy of the plasma, and its definition depends on the description of the plasma (MHD, CGL, or kinetic).

- $I(\Psi), \Phi(\Psi), \Omega(\Psi), H(\Psi), (\partial p_\parallel/\partial \Psi), (\partial W/\partial \Psi)$ are free functions of Ψ.

The code input requires a “user-friendly” set of free functions

- The input is a set of free functions representing quasi-physical variables.
- Functions can be supplied as analytical expressions or numerical tables.

\[D(\Psi') \rightarrow \text{quasi-density} \]
\[P_{||}(\Psi') \rightarrow \text{quasi-parallel pressure} \]
\[P_{\perp}(\Psi') \rightarrow \text{quasi-perpendicular pressure} \]
\[B_0(\Psi') \rightarrow \text{quasi-toroidal magnetic field} \]
\[M_{\theta}(\Psi') \rightarrow \text{quasi-poloidal sonic Mach number} \]
\[M_{\phi}(\Psi') \rightarrow \text{quasi-toroidal sonic Mach number} \]
The numerical algorithm: the multi-grid solver

- The Bernoulli equation is solved for ρ.
- The Grad-Shafranov equation is solved for Ψ using a red-black algorithm.
- If the system is anisotropic, the equation for B_φ is also solved.
- The procedure is repeated until convergence; then the solution is interpolated onto the next grid.
NSTX-like equilibria with toroidal flow

• The following set of free functions is used as input to compute anisotropic equilibria with toroidal flow:

\[
D(\Psi) = D^C \sqrt{\Psi} \quad \quad \quad P_{||}(\Psi) = P^C \Psi^2
\]

\[
B_0(\Psi) = \delta B_0 \Psi^3 + B_{\text{vacuum}} \quad \quad \quad P_{\perp}(\Psi) \leq P_{||}(\Psi)
\]

\[
M_\theta(\Psi) = 0 \quad \quad \quad M_\phi(\Psi) = M^C_\phi \sqrt{\Psi}
\]

\[
D^C = 3.4 \times 10^{19} \, (\text{m}^{-3}) \quad \quad \quad B^C_0 = 0.29 \, (\text{T}) \quad \quad \quad 0 \leq M^C_\phi \leq 2.5
\]

\[
\beta_T = 9\% \quad \quad \quad I = 0.9 \, (\text{MA})
\]

\[
R_0 = 0.86 \, (\text{m}) \quad \quad \quad a = 0.69 \, (\text{m}) \quad \quad \quad k = 1.9
\]

The centrifugal force causes an outward shift of the plasma.
The parallel anisotropy \((p_\parallel > p_\perp)\) causes an inward shift.
Flow and parallel anisotropy have opposite effect
User-supplied tables can be used as input

- Input functions from numerical data:
 \[\Omega(\Psi) \]
 \[P(\Psi) \]

\[M_{\phi}^{\text{max}} \approx 0.4 \]

A strongly shaped, NSTX-like equilibrium
FLOW can also be applied to equilibria with poloidal flow

- The free function determining the poloidal flow is $M_{\theta}(\Psi)$ representing (approximately) the sonic poloidal Mach number (poloidal velocity/poloidal sound speed). Poloidal sound speed $= C_S B_{\theta}/B$.

- Radial discontinuities in the equilibrium profiles develop when the poloidal flow becomes transonic [$M_{\theta}(\Psi) \sim 1$].

- Since the poloidal sound speed is small at the plasma edge, transonic flows may develop near the edge.

- FLOW can describe MHD or CGL equilibria with poloidal flow.
NSTX-like equilibria with poloidal flow can exhibit a pedestal structure at the edge.
Conclusions

• The code FLOW can compute axysymmetric anisotropic equilibria with arbitrary flow.

• MHD, CGL, and kinetic closures are implemented. At the moment, poloidal flow is described only by the MHD and CGL closures.

• Fast-rotating anisotropic NSTX-like equilibria have been computed with FLOW.