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A plasma consisting of electrons and two types of ions supports two types of ion-sound waves (fast and

slow), both of which can scatter incident laser radiation. At the high intensities characteristic of ICF

experiments, sound waves driven by SBS are nonlinear. We study the dispersive and nonlinear

characteristics of fast and slow waves, their tendency to steepen, and their ability to form solitons. Our

analytic predictions are verified by two-fluid simulations. This work was supported by the U.S. Department of

Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.
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It is important to understand the physics of nonlinear
sound waves in two-ion plasma

• Many ICF experiments include multiple-species plasma.

• There are “fast” and “slow” modes of sound waves in two-ion plasma.
Laser light can scatter from fast or slow sound waves.

• Depending on the plasma parameters, the growth rate of SBS on slow mode
can be less than, comparable to, or greater than the growth rate on fast
mode.1 This remains true in the presence of Landau damping.2,3

• SBS can be saturated by nonlinear steepening,4 nonlinear detuning,5
or ion trapping.2,3

1C. J. McKinstrie and M. V. Kozlov (this conference).
2Vu et al., Phys. Plasmas 1, 3542 (1994).
3Williams et al., Phys. Plasmas 2, 129 (1995).
4V. V. Kurin and G. V. Permitin, Sov. J. Plasma Phys. 8, 207 (1982).
5J. A. Heikkinen, S. J. Karttunen, and R. E. Salomaa, Phys. Fluids 27, 707 (1984).
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Sound waves obey the IFP ion fluid, Poisson equations

*Rozmus et al., Phys. Fluids B 4, 576 (1992).

• We nondimensionalize the equations in the standard way.*

• The Poisson, mass, and momentum equations are

where
α = charge–density ratio Zhnh0/Zlnl0
βi = charge-to-mass ratio Ziml/Zlmi (βl = 1, βh = β)

Vi = normalized thermal speed

∂xx
2 φ = eφ − nl + α nh

1+ α

∂t ni + ∂x niUi( ) = 0

∂t + Ui ∂x( )Ui = −βi ∂x φ − Vi
2ni ∂x ni ,
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Two linear sound waves exist

• The phase velocities can be determined graphically.

qh ql = α β c2 − V l
2( ) c2 − Vh

2( )
• The charge-density perturbations

1+ k2 = k2

ω2 − V l
2 k2 + αβk2

ω2 − Vh
2 k2













1
1+ α

• Dispersion relation

cfast > Vc and qh ql > 0.

Vh < cslow < Vl and qh ql < 0 .

• For the fast wave

• For the slow wave

1 + k2

0
Vh Cslow Vl Cfast

ω/k
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Both sound waves are dispersive

Slow mode Fast mode
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• Wave packets shed energy as a dispersive wake.

d = − 1+
2αβ c2 − Vl

2( ) c2 − Vh
2( )

c2 − Vh
2( )2 + α2 β2 c2 − Vl( )2
















.

df < 0 and ds < 0; ds < df .•

ω2 . c2 k2 + dk4, then ω. ck + dk3 2c• If
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Nonlinearities steepen both sound waves
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nl + αnh = nl

c − ul( )2 − Vl
2 nl

2 + αβnh

c − uh( )2 − Vh
2 nh

2 .

where the characteristic speeds C satisfy

dR
dt

= 0 or
dx
dt

= C ,

• In the absence of dispersion
the Riemann variables satisfy

– If nh > 1 (< 1) then nl < 1 (> 1);
wave steepens at front (back)

– Heavy ions play a more important
role as we could expect.

qh ql < 0( ).• Slow mode

– If nl > 1 (< 1) then nh > 1 (< 1);
wave steepens at front (back)

qh ql > 0( ).• Fast mode
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Fast and slow solitary waves exist

• Nonlinearity and dispersion cancel each other in solitary waves.

• Solitary waves satisfy potential equation

where ξ = x−ct. Potential function P(φ) is a complicated function of φ,c
and plasma parameters.

• φmax is an increasing function of c determined by P(φ) = 0.

• Solitary wave ceases to exist when φmax reaches either of the critical values

(Thermal particles resonate
  with the wave.)

dφ dξ( )2 + P φ( ) = 0,

Vl − c( )2 2 or c − Vh( )2 2β.
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If nonlinearity and dispersion are small, IFP equations
can be approximated by the KDV equation

• Both nonlinearity and dispersion are included in the KDV equation

which is a good approximation of IFP equations in the case of small
amplitudes and large length scales.

• Coefficients C, N, and D are complicated functions of plasma parameters
and differ for fast and slow modes.

• We can readily derive solitary wave profile for the KDV equation:

where

∂t φ + C∂x φ + Nφ∂xφ + D∂xxx
3 φ = 0,

φ ξ( ) = 3ε
N

sech2 ε
4D

• ξ




,

ξ = X − M • t and M = C + ε.
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Numerical simulations confirmed features of soliton

• “Fast” soliton is similar to soliton in 1-ion plasma.
• In “slow” soliton nh > 1, but nl < 1.
• Condition φmax < φcrit limits amplitude and speed of soliton.
• In contrast to IFP soliton amplitude of KDV soliton is not limited.

Waves with IC
determined
from KDV

Waves with IC
determined
from IFP

Profiles after propagating for two box lengths (t = 200).

Initial solitary-wave profiles
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Physics of nonlinear sound waves in two-ion plasma
is well understood

• Nonlinear and dispersive effects of the fast and slow modes
of sound waves in two-ion plasma were studied extensively,
making possible the future analysis of nonlinear saturation
of SBS.

• Low-amplitude sound waves in two-ion plasma generated
by SBS can be modeled by the set of two KDV equations.*

*Rozmus et al., Phys. Fluids B 4, 576 (1992).

Summary


