Hot-Electron Generation and Preheat in Direct-Drive Experiments
at the National Ignition Facility
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Laser—plasma instability (LPI) hot-electron production and preheat
at direct-drive ignition-relevant plasma conditions were investigated
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e National Ignition Facility (NIF) planar-target experiments achieve
direct-drive (DD) ignition-relevant scale lengths (L, ~ 400 to 700 uzm)
and electron temperatures (T, ~ 4 to 5 keV)

* Planar experiments suggest that hot-electron preheat is tolerable
in DD ignition designs with CH ablators if 1, ,, <5x101* W/cm?
(In /4 <7x101% W/cm? with Si ablators)

e Spherical multilayer target experiments will infer hot-electron
coupling to the imploding shell
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Hot-electron preheat can degrade fuel compression in DD ignition designs
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* Fuel compression is negatively affected if more than ~0.15% of the laser energy
is coupled into the fuel in the form of hot electrons*
e Hot-electron coupling to implosion depends on the electron divergence

— if electron divergence is large (like on OMEGA**), only ~25% of the
electrons will intersect the cold fuel and result in preheat

— hot-electron divergence or coupling to implosion needs to be measured
on the NIF

* Electrons with energy below ~50 keV will be stopped in the ablator and will not
preheat the compressed fuel

If the divergence is large, preheat mitigation is needed if more than ~0.7% of the

laser energy is converted to hot electrons with temperature Tt ~ 50 keV.

*J. A. Delettrez, T. J. B. Collins, and C. Ye, Bull. Am. Phys. Soc. 59, BAPS.2014.DPP.JO4.3 (2014).
TC14309 **B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).




Planar NIF experiments explore LPI instabilities and hot-electron production
in DD ignition-relevant plasma conditions

UR
LLE

Coronal conditions predicted by DRACO
radiation—hydrodynamic simulations

Parameters at " .

I, (W/cm?2) 6 to 8 x 1014 5to 15 x 1014
L, (zem) 600 500 to 700
T (keV) 35105 3t05

e Incident laser intensity is ~2x intensity at n./4 at ignition-relevant L,, and T,

TC12382f *V. N. Goncharov et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.TO5.3 (2016).
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Hot-electron properties were inferred using the measured hard x-ray spectra
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* Time-integrated hard x-ray spectra obtained using FFLEX*
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*M. Hohenberger et al., Rev. Sci. Instrum. 85, 11D501 (2014).
TC13051b FFLEX: filter-fluorescer x-ray diagnostic




Hot-electron conversion efficiency and temperature at DD ignition-relevant
coronal conditions were inferred
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Hot-electron conversion efficiency and temperature versus
laser intensity at n /4
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Hot-electron conversion efficiency and temperature at DD ignition-relevant
coronal conditions were inferred
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Hot-electron conversion efficiency and temperature versus
laser intensity at n /4
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Measurements of hot-electron angular divergence or coupling to implosion
on the NIF are needed
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e Measurements of hot-electron divergence on OMEGA* are not applicable to NIF experiments
because LPI physics on the NIF and OMEGA are different:

— SRS dominates the scattered light spectrum on the NIF, while TPD dominates on OMEGA

NIF: L, =525um OMEGA:** L, =150 um
T. = 4.5 keV T. = 2.8 keV
OMEGA spherical
Shot N160420-003 experiment (TPD)
optical spectrometer (SRS) log1g
750
3.0
700 2
—_ — 2.5
S
£ 650
Optical streaked < — 2.0
spectrometer
(NBI Q33B) 600 o
550 M. J. Rosenberg et al., Phys. Rev. Lett. 120, 055001 (2018).
* B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).
. **W. Seka et al., Phys. Plasmas 16, 052701 (2009).
Time (ns) SRS: stimulated Raman scattering
TC14376 TPD: two-plasmon decay




An OMEGA platform—to be adapted to the NIF—has been developed to
diagnose hot-electron coupling to the unablated shell in implosions

UR
LLE
OMEGA hot-electron coupling experiment ported to the NIF
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scaled up; use Ge dopant A. R. Christopherson et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.NO5.7 (2016).

The difference in hard x-ray (HXR) sighals between mass-equivalent CH and
multilayered implosions — hot-electron energy deposited in the inner shell layer.

E27049b
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NIF experiments will study hot-electron coupling to an unablated shell
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Targets for NIF experiments in September 2018

CH CH
CH (4% Ge) 45 um CH (4% Ge) 60 um
60.8 um 48.78 um 120 um

D> gas D> gas

1054.2 um 1051.22 um 1040 um

 Mass-equivalent targets consist of CH and Ge-doped layers of various thicknesses, plus
a baseline pure-CH case

* Hydro simulations predict that ~40 um of CH is ablated

 The thicknesses of the outer-CH and Ge-doped payloads are varied to measure where the hot
electrons deposit their energy

 If hydro instability is an issue, a thicker outer CH layer prevents Ge from getting into the corona

E27049c




The experiments will use thicker shells and higher-adiabat implosions than
in the standard polar-direct-drive (PDD) design* to reduce possible
hydro instabilities
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180-TW peak power for increased
hot-electron production (as in N140306)

Imprint simulation in the
standard PDD design**
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Foot power is increased
from 30 TW to 60 TW

e LILAC simulations predict the adiabat in the compressed shell of 3.6 and the adiabat at the ablation surface of ~10

* Pressure and temperature gradients are collinear at the CH/CH (4% Ge) interface — no Rayleigh—Taylor
instability growth (a weaker Richtmyer—Meshkov growth is possible)

*M. Hohenberger et al., Phys. Plasmas 22, 056308 (2015).
TC14310 **P. B. Radha et al., Phys. Plasmas 23, 056305 (2016).
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LILAC simulations predict coronal conditions
for the mass-equivalent implosions
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e Simulation for a target with a Ge-doped layer
(coronal conditions are similar for mass-equivalent all-CH implosions)
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*C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974);
TC14311 A. Simon et al., Phys. Fluids 26, 3107 (1983).




The energy deposited into a payload can be inferred by subtracting the all-CH
HXR from the HXR of a Ge-doped layered target
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E payload 4
(Er_ad) =1.5x1073 CH (4% Ge) ) =95.9X10~
lost /o (4% Ge) @ CH
1 = . 99 rad - - <ZZ>
e “Radiative power E,__ IS proportional to ——-
lost <Z>
o Eg?_ly(';’;)dae) ~ Eqy are energies deposited by hot electrons into the CH (4% Ge) payload
and CH replacing the payload in an all-CH target
Elayered_ EaII-CH
Preheat formula*: EPayload ___ —“rad __ “rad
CH (4% Ge) (Erad >payload _ ( Erad )
Ejost CH (4% Ge) Elost CH
TC14313 *A. R. Christopherson et al., presented at IFSA 2015, Seattle, WA, 20-25 September 2015.




The preheat formula is compared to the results of 1-D LILAC hydro simulations
with hot electrons
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Predicted NIF hard x-ray data

LILAC simulations for Tt = 55 keV, hot-electron
divergence full angle of 277, Ge-doped target at 3.9%
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* The fraction of laser energy into superthermals and the source divergence
angle will be constrained by the two measured HXR signals

Hot-electron energy coupled to an implosion constrains
usable laser intensities in direct-drive ignition designs.
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Summary/Conclusions

LPI hot-electron production and preheat at direct-drive ignition-relevant
plasma conditions were investigated
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e National Ignition Facility (NIF) planar-target experiments achieve
direct-drive (DD) ignition-relevant scale lengths (L, ~ 400 to 700 uzm)
and electron temperatures (T, ~ 4 to 5 keV)

* Planar experiments suggest that hot-electron preheat is tolerable
in DD ignition designs with CH ablators if 1, ;, <4.5x101* W/cm?
(In /4 <7x101% W/cm? with Si ablators)

e Spherical multilayer target experiments will infer hot-electron
coupling to the imploding shell
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