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Planar experiments at the National Ignition Facility (NIF) 
have investigated laser–plasma interaction (LPI) hot‑electron  
production at direct‑drive ignition‑relevant conditions

• Experiments achieve scale lengths of Ln ~ 400 to 700 nm,  
electron temperatures of Te ~ 3 to 5 keV, and laser intensities  
of 0.5 to 1.5 × 1015 W/cm2

• Hot‑electron generation of the order of fhot ~ 0% to 3%  
and Thot ~ 50 keV have been observed

 – Inc/4
 ~ 5 × 1014 W/cm2 may be acceptable for preheat

• Stimulated Raman scattering (SRS) is inferred to be the dominant 
LPI mechanism, although recent measurements (3~/2) have 
uncovered evidence of two‑plasmon decay (TPD) as well

• Upcoming spherical experiments will diagnose hot‑electron 
coupling (preheat) to an implosion
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Outline

• Motivation for direct‑drive LPI experiments on the NIF and planar platform development

• Hot‑electron results and LPI mechanisms: Predominantly SRS

• Future work: Hot‑electron coupling
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Outline
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• Motivation for direct‑drive LPI experiments on the NIF and planar platform development

• Hot‑electron results and LPI mechanisms: Predominantly SRS

• Future work: Hot‑electron coupling
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The National Direct Drive Program is underway at OMEGA and the NIF  
to demonstrate the ignition physics of direct drive
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0.86 mm 

OMEGA 26 kJ

Scale 1:70
in energy

OMEGA NIF

Direct-drive
NIF 1.8 MJ

3.6 mm

Direct-drive
NIF 1.8 MJ

OMEGA 100-Gbar Campaign: 
Demonstrate hot-spot pressure of 
100 Gbar in hydro-scaled implosions

NIF Megajoule Direct-Drive (MJDD) 
Campaign: Demonstrate laser–plasma
coupling physics at the ignition scale

The MJDD campaign is predominantly focused on understanding and mitigating:  
laser imprint, cross‑beam energy transfer (CBET), and LPI/hot‑electron preheat.

Motivation
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Hot‑electron preheat is a potential concern for direct‑drive ignition designs

7

Motivation

Limit of ~0.15% laser energy into fuel preheat; wide angular divergence* 
" limit of ~0.7% laser energy into hot electrons generated.

* B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).

Laser intensity 
attenuated 
by ~2# at nc/4 

Direct-drive implosion

DT fuel

LPI hot electrons, 
some enter the DT fuel 
(wide angular divergence, 
according to OMEGA 
experiments*)

nc/4
surface

CH 
ablator
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Direct‑drive ignition designs predict long density scale lengths and high 
electron temperatures at which LPI may generate hot electrons
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Experiments must be performed at these conditions  
to understand LPI at the NIF/ignition scale.
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Planar experiments on the NIF were designed to achieve plasma  
conditions comparable to direct‑drive ignition designs

NIF ignition 
scale

NIF planar 
experiments

Ln (nm) 500 to 600 400 to 700

Te (keV) 3.5 to 5 3 to 5

IL (W/cm2) (6 to 8) × 1014 (4 to 15) × 1014
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CH

2-D DRACO-simulated 
plasma conditions at nc/4

Planar platform
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Experiments must be performed at these conditions  
to understand LPI at the NIF ignition scale.

* A. A. Solodov et al., this conference.



E27563

Based on simulated plasma conditions, and considering overlapped  
laser intensities, these experiments are well above LPI thresholds
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 * A. Simon et al. Phys. Fluids 26, 3107 (1983).
** C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).

• Absolute instability thresholds for a single beam at normal incidence
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Two initial planar experiments were performed on the NIF  
to constrain plasma conditions
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Cross‑beam energy transfer does not have a strong influence on conditions at nc/4.
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Microdot spectroscopy was used to infer electron temperatures  
around 3 keV, in reasonable agreement with DRACO modeling    
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Time-resolved x-ray spectrum on shot N150520
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In subsequent experiments at higher laser intensity, the wavelength  
of ~/2 emission was used to infer Te ~ 4.5 keV at nc/4
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* W. Seka et al., Phys. Fluids 28, 2570 (1985). 

These results validate hydro modeling of the plasma conditions and  
demonstrate that ignition‑relevant coronal temperatures are achieved.

Te ~ 4.5 keV agrees  
with DRACO
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Outline
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• Motivation for direct‑drive LPI experiments on the NIF and planar platform development

• Hot‑electron results and LPI mechanisms: Predominantly SRS

• Future work: Hot‑electron coupling
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Hard x‑ray measurements have been used to infer fhot and Thot  
as functions of laser intensity in planar experiments
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fhot up to 3% and Thot of 40 to 60 keV are measured in CH  
and Si targets for nc/4 intensities up to 1.3 × 1015 W/cm2;  
5 × 1014 W/cm2 may be acceptable for preheat
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* M. Rosenberg et al. Phys. Rev. Lett. 120, 055001 (2018);
  A. A. Solodov et al., this conference.

fhot is close to levels thought to be tolerable in direct‑drive ignition designs; need to understand  
(1) LPI mechanisms (for mitigation), (2) coupling of hot electron to implosion (preheat).
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Scattered‑light measurements to identify the hot‑electron source were 
optimized by orienting the target normal to the optical diagnostics

View along target normal is optimal for ~/2 since  
most emission occurs within ~10° of normal*
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If TPD is dominant, expect to see an ~/2 doublet feature, as has been observed previously on OMEGA.*
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 * W. Seka et al., Phys. Rev. Lett. 112, 145001 (2014).
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Optical data demonstrate different LPI physics on the NIF than on OMEGA—
SRS dominates the scattered light spectrum (both at and below nc/4)
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On the NIF, ~5% of laser energy is converted to SRS, consistent with the observed hot‑electron fraction and 
suggestive of SRS being the dominant hot‑electron source, although this does not rule out the presence of TPD.

 M. Rosenberg et al., Phys. Rev. Lett. 120, 055001 (2018).
 * W. Seka et al., Phys. Plasmas 16, 052701 (2009).

Optical streaked
spectrometer

NBI Q33B

Shot N160420-003
optical spectrometer (SRS)

OMEGA spherical
experiment (TPD)

750

700

650

600

550
m

 (
n

m
)

0 2 4

Time (ns)

6 8

log10

1.5

2.0

2.5

3.0

“Convective” 
SRS (<nc/4)

Absolute SRS 
(nc/4)

OMEGA:* Ln = 150 nm
 Te = 2.8 keV

NIF: Ln = 525 nm 
 Te = 4.5 keV



E27531 

SRS observations correlate with hard x‑ray measurements
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Time-resolved SRS and hard x-ray signal

Time (ns)

6 8 10–2 0 2 4 12

Hot-electron fraction versus 
SRS signal at 30°

SRS signal/laser energy (arbitrary units)

0.00 0.02 0.04 0.06

1.0
0.9
0.8
0.7
0.6

0.4
0.5

0.3
0.2
0.1
0.0

N
o

rm
al

iz
ed

 s
ig

n
al

3.0

0.0

0.5

1.0

1.5

2.0

2.5

f h
o

t (
%
)

Laser pulse total
B315 SRS streak
B365 SRS streak
Q33B streak Ch2
FFLEX Ch9

CH outers—after 4.5 ns
CH inners—after 4.5 ns
Si inners—after 4.5 ns

Shot N171012-002



E26298b

The dominance of SRS at the NIF scale may be partially explained  
by evaluating the absolute thresholds of SRS versus TPD 
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M. Rosenberg et al. Phys. Rev. Lett. 120, 055001 (2018).
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Ramp‑pulse experiments show thresholds and growth of both  
unsaturated “convective” SRS and saturated absolute SRS
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Sidescatter is observed as one of several SRS mechanisms
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M. Rosenberg et al. Phys. Rev. Lett. 120, 055001 (2018).

Observation at 50°  
can only be sidescatter.
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This observation is explained by tangential SRS sidescatter,* which allows for SRS 
observation at large angles and wavelength independent of drive‑beam angle

23

Tangential sidescatter 
exit angle does not 
depend on the 
incidence angle

* P. Michel et al., “Measurements and Modeling of Raman Side‑Scatter in Inertial 
  Confi nement Fusion Experiments,” submitted to Physical Review Letters.
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Single‑beam and potential multibeam SRS effects have been  
identified in experiments with beams selectively turned off

24

15B15B

24B24B

16B16B
44B44B

31B31B
21B21B

14B14B

43B43B

45B45B

35B35B

32B32B25B25B

22B22B

13B13B

11B11B

41B41B

46B46B

34B34B

26B26B

23B23B

33B33B

42B42B

12B12B

Q36BQ36B

CH

Optical streaked 
spectrometers

0

10

20

30

40

0 2 4 6 8 10

P
o

w
er

 (
T

W
) 

FABS - Q36B (50°)
N160421-001

0 2 4 6 8

log10

1

2

3

4

750

650

550

m
 (

n
m

)

Time (ns)

23°, 30°
(32 beams) 45°, 50°

(63 beams) 

Time (ns)

FABS: full‑aperture backscatter stations



E27566a

Single‑beam and potential multibeam SRS effects have been  
identified in experiments with beams selectively turned off
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Single‑beam and potential multibeam SRS effects have been  
identified in experiments with beams selectively turned off
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Single‑beam and potential multibeam SRS effects have been  
identified in experiments with beams selectively turned off
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In addition, recent experiments diagnosed 3~/2 emission,  
which revealed evidence of TPD

28

The 3~/2 doublet is suggestive of some TPD activity, although  
this is consistent with a SRS‑dominated regime.
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In addition, recent experiments diagnosed 3~/2 emission,  
which revealed evidence of TPD
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Caveat: observed scattered 3~/2 light is sensitive to hydrodynamics.
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The next planar experiments will measure 3~/2 along target normal to 
determine the prevalence of absolute and convective SRS/TPD instabilities

30

The 3~/2 measurement  
along target normal will  
provide access to plasma  
waves at all densities  
at all times

SRS
spectrometers

OTS (3~/2)

June and October 2018 experiments

Knowledge of where the  
dominant LPI is occurring  
is critical for mitigation  
(if needed).
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Outline

31

• Motivation for direct‑drive LPI experiments on the NIF and planar platform development

• Hot‑electron results and LPI mechanisms: Predominantly SRS

• Future work: Hot‑electron coupling
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Reminder: The tolerable fraction of hot electrons generated (fhot)  
depends on how the electrons couple to an implosion
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Tolerable fhot ~0.7% Tolerable fhot ~0.2%

* OMEGA experiments described in B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).

Direct-drive implosion
Wide angular divergence* Narrow angular divergence

DT fuel

LPI hot 
electrons

nc/4
surface

CH 
ablator
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A spherical‑geometry platform was developed on OMEGA to diagnose 
coupling of hot electrons to an imploding shell
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Difference in HXR signals between mass‑equivalent CH and multilayered  
implosions " hot‑electron energy deposited in the inner shell layer.
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This platform is being adapted to the NIF in order to determine hot‑electron 
coupling in a different LPI regime at longer scale lengths
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Hot‑electron energy coupled to an implosion constrains  
usable laser intensities in direct‑drive ignition designs.
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Summary/Conclusions 

Planar experiments at the National Ignition Facility (NIF) 
have investigated laser–plasma interaction (LPI) hot‑electron  
production at direct‑drive ignition‑relevant conditions

• Experiments achieve scale lengths of Ln ~ 400 to 700 nm,  
electron temperatures of Te ~ 3 to 5 keV, and laser intensities  
of 0.5 to 1.5 × 1015 W/cm2

• Hot‑electron generation of the order of fhot ~ 0% to 3%  
and Thot ~ 50 keV have been observed

 – Inc/4
 ~ 5 × 1014 W/cm2 may be acceptable for preheat

• Stimulated Raman scattering (SRS) is inferred to be the dominant 
LPI mechanism, although recent measurements (3~/2) have 
uncovered evidence of two‑plasmon decay (TPD) as well

• Upcoming spherical experiments will diagnose hot‑electron 
coupling (preheat) to an implosion

Overall: encouraging results (so far) for direct drive in a new LPI regime.
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Knowledge of SRS mechanisms—absolute SRS (~/2) and sidescattered 
SRS—allows for extrapolation to the total SRS generated

Distribution of the observed sidescattered 
SRS is based on ray‑tracing of 2‑D simulated 
plasma conditions
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Approximately 5% of laser energy converted to SRS 
is consistent with the observed hot‑electron fraction.
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Various single‑beam and potential multiple‑beam effects have 
been identified in experiments with beams selectively turned off
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Various single‑beam and potential multibeam effects have been identified  
in experiments with beams selectively turned off
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Ramp‑pulse experiments show thresholds and growth of both  
non‑saturated “convective” SRS and saturated absolute SRS
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LPSE simulations (TPD only) qualitatively reproduce  
the 3~/2 doublet spectrum from N180104‑001 at early times
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N180104 Experiments

Caveat: preliminary LPSE simulations with SRS and TPD may also be consistent  
with this—SRS seeding TPD, or both instabilities occurring simultaneously. 
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Si targets produce reduced SRS reflectivity in comparison  
to CH, a similar trend to the hot‑electron results

42

0

10

20

30

40

0 2 4 6 8 10

P
o

w
er

 (
T

W
) 

Time (ns) 

45°, 50°
(64 beams) 

23°, 30°
(32 beams) 

SRS time history
(Si versus CH)

0 5 10
Time (ns)

0.0

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

2.0

2.5 50°

30°

S
ig

n
al

 (
ar

b
it

ra
ry

 u
n

it
s)

CH

CH

Si

Si

Shot N160421-001 CH
Shot N160719-001 Si

CH ablator
(N160421‑001)

Si ablator
(N160719‑001)

Ln (nm) 690 560

Te (keV) 4.4 5.2

IL (W/cm2) 1.1 × 1015 0.92 × 1015

2‑D DRACO‑simulated plasma conditions  
at nc/4 during 23°, 30° beam drive


