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Stimulated Raman scattering (SRS) evolution and saturation has been studied 
with LPSE* and the modeling can be expanded to large spatial scales

•	 Recent studies of SRS, have motivated the development of the 
SRS model in LPSE, where it is coupled to other LPSE capabilities

•	 The growth of the absolute SRS instability has been observed 
in LPSE simulations near the quarter-critical density, with the 
instability saturation caused by the coupling of SRS to low-
frequency density perturbations

•	 In the saturation regime of the absolute SRS instability, the 
nonlinear dynamic evolution results in a high transmission 
of laser light through the instability region
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Summary

*LPSE: laser-plasma simulation environment;
J. F. Myatt et al., Phys. Plasmas 24, 056308 (2017).
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•	 SRS is the decay of the light wave into 
the scattered Raman light wave and the 
plasma wave that can result in

–– absolute instability†

–– convective amplification (Rosenbluth 
gain in inhomogeneous plasmas)

•	 SRS develops at densities up to the 
quarter-critical density, and near the 
quarter-critical density can coexist 
with two-plasmon decay (TPD)
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	*	NIF: National Ignition Facility
**	M. J. Rosenberg et al., Phys. Rev. Lett. 120, 055001 (2018).
	 †	J. F. Drake and Y. C. Lee, Phys. Rev. Lett. 31, 1197 (1973);                 
   C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).

In recent direct-drive experiments on the NIF,* the scattered-light spectra 
have been identified with SRS,** emphasizing the interest in SRS
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For a broad range of direct-drive ICF* plasma conditions near the quarter-
critical density, the SRS** growth rate is larger than the TPD† growth rate
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TPD
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	 *	ICF: inertial confinement fusion
**	J. F. Drake and Y. C. Lee, Phys. Rev. Lett. 31, 1197 (1973);                 
   C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).

†A. Simon et al., Phys. Fluids 26, 3107 (1983).
‡H. Wen et al., Phys. Plasmas 22, 052704 (2015).

‡*M. J. Rosenberg et al., Phys. Rev. Lett. 120, 055001 (2018).
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LPSE* models the LPI** relevant to ICF, resolving scales  
from laser wavelength to target size

5

•	 LPSE 
–– is non-paraxial
–– models full vector fields
–– has arbitrary field injection
–– has spectral bandwidth models
–– uses different density and flow profiles
–– includes multilevel parallelism

•	 LPSE is capable of modeling multiple LPI processes
–– stimulated Brillouin scattering (SBS)

–– Cross-beam energy transfer (CBET)

–– filamentation
–– two-plasmon decay 
–– Langmuir-decay instability (LDI)
–– hot-electron generation

ne/nc

	*	J. F. Myatt et al., Phys. Plasmas 24, 056308 (2017). 
**	LPI: laser–plasma interaction
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LPSE now includes the capabilities to model SRS 

•	 The model describes the evolution of laser light E0 (near frequency ~0), 
Raman-scattered light E1 (near ~1), plasma-wave field Ep (near ~p), and 
the ion-acoustic perturbation N

6

It is possible to study the relative importance of different wave-coupling processes.
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The absolute instability of SRS has been modeled in 2-D 
in the density region including the quarter-critical density

7

t = 1 ps
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The growth of the absolute instability of SRS has been observed
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t = 4 ps
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The absolute instability growth is followed 
by the beginning of nonlinear saturation
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t = 5 ps
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The dynamic saturation regime is caused by the coupling between 
the plasma waves, light waves, and low-frequency modes
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t = 8 ps
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The spectra of Raman light correspond to the small wave vector domain
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The spectra show the scattering of plasma waves
in backwards and other directions
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The spectra of low-frequency perturbations show 
the signatures of Langmuir-decay instability
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The laser light is significantly depleted at the end of the 
instability growth stage, but then the light transmission 
increases in the dynamic saturation stage
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The nonlinear-stage transmission of laser light through the SRS 
instability region moderately depends on laser intensity
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Stimulated Raman scattering (SRS) evolution and saturation has been studied 
with LPSE* and the modeling can be expanded to large spatial scales

•	 Recent studies of SRS, have motivated the development of the 
SRS model in LPSE, where it is coupled to other LPSE capabilities

•	 The growth of the absolute SRS instability has been observed 
in LPSE simulations near the quarter-critical density, with the 
instability saturation caused by the coupling of SRS to low-
frequency density perturbations

•	 In the saturation regime of the absolute SRS instability, the 
nonlinear dynamic evolution results in a high transmission 
of laser light through the instability region
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Summary/Conclusions

*LPSE: laser-plasma simulation environment;
J. F. Myatt et al., Phys. Plasmas 24, 056308 (2017).


