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•	 Significant K-edge shift in dense  
silicon is predicted

•	 Astrophysics opacity table (AOT)  
data fail to predict it
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Finite-temperature density functional theory (DFT) is a powerful tool to 
accurately predict properties of matter at a wide range of densities across 
temperature regimes [warm-dense-matter (WDM) conditions]

•	 Exchange-correlation (XC) thermal effects in simulations of WDM are taken 
into account via use of a temperature-dependent XC functional

•	 A set of accurate all-electron pseudo-potentials for the calculation of x-ray 
absorption near edge structure (XANES) spectra has been constructed

•	  Absorption coefficients and opacities of silicon (densities between  
0.1 and 500 g/cm3 and temperature between 0.5 and 1000 eV) have  
been calculated
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Silicon is important to HED physics, such as planetary science 
and ICF capsules 

Motivation
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Planetary science* ICF capsule**
NIF

OMEGA

        11 to 14 nm CHSi (6%)
      1 to 2 nm mid-Z (Z = 6 to 14, Si)
   6 nm Be
125 nm DT

       4 nm CHSi (6%)
     0.5 to 1 nm mid-Z
   3 nm Be
45 nm DT 

1350 n
m

•	 The high-pressure 
silicon equation of 
state (EOS) is crucial 
to understanding the 
dynamics of silicon-
rich planets (i.e., Earth)

•	 Silicon is used in ICF 
capsules to reduce  
fuel preheat and  
laser–plasma instability 
(LPI) effects

	*	http://www.nasa.gov/sites/default/files/images/607068main_world-unlabeled.jpg
	** V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).	

HED: high-energy density
	ICF: inertial confinement fusion
	NIF: National Ignition Facility
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Warm dense matter is of interest in planetary science,  
astrophysics, and ICF

•	 Classical plasma approaches work only for 
weakly coupled nondegenerate systems  
(C% 1: low density, very high temperature) 
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•	 All regions except left-upper corner  
require quantum treatment of  
electronic degrees of freedom

•	 Most of (semi-) classical models  
are inaccurate or fail

C = e2 / rskBT $ 1: the Couloumb coupling parameter
i = t = T/TF á 1: reduced temperature
TF: Fermi temperature
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Thermal DFT coupled with ab initio molecular dynamics (AIMD)  
has become a standard tool in high-energy-density physics (HEDP)

Molecular dynamics

Born–Oppenheimer energy surface:    
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The current best practice uses free-energy DFT with one-
electron Kohn–Sham orbitals

The Kohn–Sham scheme replaces the (3Ne)-dimensional 
problem by Ne-coupled 3-D problems

Thermodynamic data
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Kohn–Sham 
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fk – zk
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MD: molecular dynamics
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DFT-based AIMD makes it possible to calculate many material  
properties required for simulations of ICF implosions and provides  
predictions for HEDP experiments

Some of material properties accessible from DFT-based AIMD simulations

•	  Equation of state

•	  Thermal conductivity

•	  Electrical conductivity

•	  Reflectivity

•	  Absorption coefficients " Rosseland and Planck mean opacities

HEDP requires development of new methods and functionals to accurately 
predict matter properties 

•	  Temperature-dependent exchange-correlation functionals are required to 
take into account the XC thermal effects

•	  All-electron (i.e., with active 1s-core electrons) pseudo-potentials are 
needed for x-ray absorption calculations 
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A framework for temperature-dependent XC functionals has been  
developed to address the issue of thermal effects

Exchange

Constraints

•	 Reproduce finite-temperature  
gradient expansion

•	 Satisfy Lieb–Oxford bound at T = 0

•	 Reduce to correct T = 0 limit

•	 Reduce to correct high-temperature limit

Constraints

•	 Reproduce finite-temperature  
gradient expansion

•	 Reduce to correct T = 0 limit

•	 Reduce to correct high-temperature limit

Correlation
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*	V. V. Karasiev, J. W. Dufty, and S. B. Trickey, “Non-Empirical Semi-Local Free-Energy  
		Density Functional for Matter Under Extreme Conditions.” Phys. Rev. Lett. 120, 076401 (2018).

Generalized gradient approximation (GGA)



•	 The real part of electrical conductivity v1 and thermal conductivity l are given in terms 
of the Onsager coefficients Lmn

						    

•	 The frequency-dependent Onsager coefficients are defined in terms of the velocity 
operator matrix elements:

•	 The imaginary part v2 could be calculated via Kubo Greenwood formula in terms of the 
velocity operator matrix elements or alternatively from the principal value integral
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Electronic transport coefficients are calculated from ab initio simulations within 
the framework of the Kubo–Greenwood approach (linear response theory) 

9

; ;i L T L L
L1 –1 2 1 11 22

11

12
2

v v v v l= + = = d n

ki kj
2

d} }a

The dielectric function and index of  
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Calculation of optical properties within the x-ray range involves  
transitions from core states " explicit treatment of 1s electrons  
in electronic structure calculations is required

•	  There is a need for an “all-electron” 
pseudo-potential (PP) to treat 1s states 

•	 We constructed an all-electron PP for 
Si, rc = 0.75 bohr

•	 Converged cutoff energy:  
Ecut = 400 Ry = 5.4 keV 
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Convergence study of the total energy and 
pressure with regard to Ecut for all-electron 
PP for Si64 atoms molecular-dynamics 
snapshot (t = 2.57 g/cm3, T = 2000 K)
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Convergence study of absorption with regard to pseudopotential cutoff radius 
for Si1, t = 9.0 g/cm3, and T = 62,500 K
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A novel method of extending calculations to the x-ray range was proposed: 
combine the MD snapshot (Si32) and single-atom (Si1) data for absorption:  
Si32 data at ~ < 300 eV and Si1 data at ~ > 300 eV 
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Comparison to the NIST reference data for Si absorption,  
t = 2.33 g/cm3, T = 300 K confirms accuracy of the method;  
some discrepancies are observed at low ~ 
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Comparison between the AOT and DFT data for opacity, silicon,  
t = 9.0 g/cm3, T = 62,500 K shows good agreement only at some conditions
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Comparison between the AOT and DFT data for total opacity,  
silicon t = 50 g/cm3 K shows discrepancy at  T < 30 eV
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•	 AOT data are not accurate at low temperatures
•	 The same trend previously was observed in AOT  

data for other materials D2 and CH*
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S. X. Hu et al., Phys. Rev. E 90, 033111 (2014);
S. X. Hu et al., Phys. Rev. B 96, 144203 (2017). 
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We predicted the K-edge shift of the x-ray absorption spectra in dense silicon 
as a result of continuum lowering and Fermi surface rising effects* 
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K-edge shift in dense silicon is significant;  
AOT data fail to predict the shift  
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•	 LLE is planning experiments on OMEGA for  
experimental measurements of the K-edge shift
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Summary/Conclusions

•	 Exchange-correlation (XC) thermal effects in simulations of WDM are taken 
into account via use of a temperature-dependent XC functional

•	 A set of accurate all-electron pseudo-potentials for the calculation of x-ray 
absorption near edge structure (XANES) spectra has been constructed

•	  Absorption coefficients and opacities of silicon (densities between  
0.1 and 500 g/cm3 and temperature between 0.5 and 1000 eV) have  
been calculated

Finite-temperature density functional theory (DFT) is a powerful tool to 
accurately predict properties of matter at a wide range of densities across 
temperature regimes [warm-dense-matter (WDM) conditions]


