Mitigating Laser-Imprint Effects on Direct-Drive **Implosions on OMEGA with Low-Density Foam Layers**

S. X. Hu **University of Rochester** Laboratory for Laser Energetics

48th Annual Anomalous Absorption Conference Bar Harbor, ME 8–13 July 2018

Summary

DRACO simulations* have indicated that a low-density foam layer can mitigate laser imprints in direct-drive inertial confinement fusion (ICF)

- A thin foam layer of above critical density has been proposed to mitigate laser-imprint effects in direct-drive implosions on OMEGA
- Two-dimensional DRACO simulations, with the state-of-the-art physics models, have been performed to examine this idea
- The simulation results indicate that a 40- μ m-thick foam layer with density of $ho \approx 40$ mg/cm³ can increase the neutron yield by a factor of 4 to 8 and recover the 1-D compression ρR

Planar experiments using a thin foam layer to mitigate laser imprints are currently being pursued on OMEGA.

W. Theobald, P. B. Radha, J. L. Peebles, S. P. Regan, M. J. Bonino, D. R. Harding, V. N. Goncharov, N. Petta, T. C. Sangster, and E. M. Campbell

> **University of Rochester** Laboratory for Laser Energetics

> > A. Nikroo

Lawrence Livermore National Laboratory

DRACO simulations with new physics models (iSNB,* CBET,** FPEOS⁺) predicted significant distortions for low- α implosions caused by laser imprint (up to mode $\ell = 200$)

iSNB: improved Schurtz Nicolai-Busquet; CBET: cross-beam energy transfer; FPEOS: first-principles equation of state *D. Cao, G. Moses, and J. Delettrez, Phys. Plasmas 22, 082308 (2015)

**I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010); J. A. Marozas and T. J. B. Collins, Bull. Am. Phys. Soc. 57, 344 (2012). [†]S. X. Hu et al., Phys. Rev. Lett. 104, 235003 (2010); Phys. Rev. B 84, 224109 (2011); Phys. Rev. E 92, 043104 (2015).

TC12900a

z (μm)

Both simulations* and experiments** have indicated that laser imprint is a major source of target performance degradation in low-adiabat implosions on OMEGA

*S. X. Hu et al., Phys. Plasmas 23, 102701 (2016). **D. T. Michel, S. X. Hu et al., Phys. Rev. E 95, 051202 (2017). [†]SSD: smoothing by spectral dispersion

We have proposed to use a thin foam layer on top of a standard target to mitigate laser imprints in direct-drive ICF implosions

A single-picket pulse drives a mid-adiabat ($\alpha \approx 3$) implosion for these targets, which are simulated by DRACO with iSNB + CBET + FPEOS models

Laser-imprint was simulated up to a maximum mode of ℓ = 200.

Laser-imprint-induced modulation growth has been examined for two targets during the acceleration phase

RÖCHESTER

The foam layer can increase the ablation velocity and density scale length at the ablation front, which both help to reduce the imprint-induced Rayleigh–Taylor (RT) growth

The simulations show a smaller outer-/inner-surface growth for the foam target

At peak neutron production, the foam target gives a much better performance

Comparison of the implosion performance between two types of targets has indicated the mitigation of laser imprints by the foam target

	Standard target	Foam target	
hoR (mg/cm ²)	112	230	
$\langle {\it T_i} angle$ (keV)	1.74	2.06	
DD yield	5.2 × 10 ⁹	3.9 × 10 ¹⁰	

A factor of 7 to 8 enhancement in yield is obtained with the foam target!

12

Effects of the foam-surface/thickness modulation on the laser-imprint mitigation was investigated

TC14278

13

At peak neutron production, the foam modulation level of $\sigma_{\rm rms} \leq 0.5 \ \mu$ m still gives much better target performance than the standard-target case

TC14280 ROCHESTER

DRACO simulations have indicated that a foam target with a surface modulation of $\sigma_{rms} \leq 0.5 \ \mu m$ can increase the neutron yield by a factor of 4 to 8

	Standard target	Foam target $(\sigma_{\rm rms}$ = 0.0 μ m)	Foam target $(\sigma_{\rm rms} = 0.25 \ \mu {\rm m})$	Foam target ($\sigma_{\rm rms}$ = 0.5 μ m)
hoR (mg/cm ²)	112	230	246	183
$\langle {\it T_i} angle$ (keV)	1.74	2.06	2.08	2.00
DD yield	5.2 × 10 ⁹	3.9 × 10 ¹⁰	3.99 × 10 ¹⁰	2.1 × 10 ¹⁰

A factor of 4 to 8 enhancement in yield and ~80% of 1-D ρR can be obtained with a foam target of $\sigma_{\rm rms} \leq$ 0.5 $\mu {\rm m}!$

Foam target $(\sigma_{\rm rms}$ = 1.0 μ m)

127

1.94

$8.3 imes 10^9$

DRACO simulations also indicated that different low-/mid-Z foam materials can be used to mitigate laser imprints

Similar target performance has been seen for both CH foam and SiO₂ foam targets.

Summary/Conclusions

DRACO simulations* have indicated that a low-density foam layer can mitigate laser imprints in direct-drive inertial confinement fusion (ICF)

- A thin foam layer of above critical density has been proposed to mitigate laser-imprint effects in direct-drive implosions on OMEGA
- Two-dimensional DRACO simulations, with the state-of-the-art physics models, have been performed to examine this idea
- The simulation results indicate that a 40- μ m-thick foam layer with density of $ho \approx 40$ mg/cm³ can increase the neutron yield by a factor of 4 to 8 and recover the 1-D compression ρR

Planar experiments using a thin foam layer to mitigate laser imprints are currently being pursued on OMEGA.

