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• A thin foam layer of above critical density has been proposed to 
mitigate laser-imprint effects in direct-drive implosions on OMEGA

• Two-dimensional DRACO simulations, with the state-of-the-art  
physics models, have been performed to examine this idea 

• The simulation results indicate that a 40-nm-thick foam layer  
with density of t á 40 mg/cm3 can increase the neutron yield  
by a factor of 4 to 8 and recover the 1-D compression tR 
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Summary

Planar experiments using a thin foam layer to mitigate  
laser imprints are currently being pursued on OMEGA.

DRACO simulations* have indicated that a low-density foam layer can mitigate 
laser imprints in direct-drive inertial confinement fusion (ICF)

* S. X. Hu et al., “Mitigating Laser-Imprint Effects in Direct-Drive Inertial-Confinement Fusion  
  Implosions with an Above-Critical-Density Foam Layer,” submitted to Physics of Plasmas.
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DRACO simulations with new physics models (iSNB,* CBET,** FPEOS†) 
predicted significant distortions for low-a implosions caused by laser imprint
(up to mode , = 200)
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    iSNB: improved Schurtz Nicolai-Busquet; CBET: cross-beam energy transfer;  FPEOS: first-principles equation of state
  * D. Cao, G. Moses, and J. Delettrez, Phys. Plasmas 22, 082308 (2015)
 ** I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010); J. A. Marozas and T. J. B. Collins, Bull. Am. Phys. Soc. 57, 344 (2012).
  † S. X. Hu et al., Phys. Rev. Lett. 104, 235003 (2010); Phys. Rev. B 84, 224109 (2011); Phys. Rev. E 92, 043104 (2015).
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Both simulations* and experiments** have indicated that laser imprint is a major 
source of target performance degradation in low-adiabat implosions on OMEGA
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 * S. X. Hu et al., Phys. Plasmas 23, 102701 (2016).
** D. T. Michel, S. X. Hu et al., Phys. Rev. E 95, 051202 (2017).
 † SSD: smoothing by spectral dispersion
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We have proposed to use a thin foam layer on top of a standard target  
to mitigate laser imprints in direct-drive ICF implosions 
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A single-picket pulse drives a mid-adiabat (a á 3) implosion for these targets, 
which are simulated by DRACO with iSNB + CBET + FPEOS models
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Laser-imprint was simulated up to a maximum mode of , = 200.
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Laser-imprint–induced modulation growth has been examined 
for two targets during the acceleration phase
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The foam layer can increase the ablation velocity and density  
scale length at the ablation front, which both help to reduce  
the imprint-induced Rayleigh–Taylor (RT) growth
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The simulations show a smaller outer-/inner-surface growth for the foam target
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At peak neutron production, the foam target gives a much better performance
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Comparison of the implosion performance between two types of targets  
has indicated the mitigation of laser imprints by the foam target 

Standard 
target Foam target

tR (mg/cm2) 112 230

GTiH (keV) 1.74 2.06

DD yield 5.2 × 109 3.9 × 1010
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A factor of 7 to 8 enhancement in yield is obtained with the foam target!
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Effects of the foam-surface/thickness modulation 
on the laser-imprint mitigation was investigated
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At peak neutron production, the foam modulation level of vrms # 0.5 nm 
still gives much better target performance than the standard-target case
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DRACO simulations have indicated that a foam target  
with a surface modulation of vrms # 0.5 nm can  
increase the neutron yield by a factor of 4 to 8

Standard 
target

Foam target 
(vrms = 0.0 nm)

Foam target 
(vrms = 0.25 nm)

Foam target 
(vrms = 0.5 nm)

Foam target 
(vrms = 1.0 nm)

tR (mg/cm2) 112 230 246 183 127

GTiH (keV) 1.74 2.06 2.08 2.00 1.94

DD yield 5.2 × 109 3.9 × 1010 3.99 × 1010 2.1 × 1010 8.3 × 109
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A factor of 4 to 8 enhancement in yield and ~80% of 1-D tR  
can be obtained with a foam target of vrms # 0.5 nm!
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DRACO simulations also indicated that different low-/mid-Z 
foam materials can be used to mitigate laser imprints
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Summary/Conclusions 

* S. X. Hu et al., “Mitigating Laser-Imprint Effects in Direct-Drive Inertial-Confinement Fusion  
  Implosions with an Above-Critical-Density Foam Layer,” submitted to Physics of Plasmas.

Planar experiments using a thin foam layer to mitigate  
laser imprints are currently being pursued on OMEGA.

• A thin foam layer of above critical density has been proposed to 
mitigate laser-imprint effects in direct-drive implosions on OMEGA

• Two-dimensional DRACO simulations, with the state-of-the-art  
physics models, have been performed to examine this idea 

• The simulation results indicate that a 40-nm-thick foam layer  
with density of t á 40 mg/cm3 can increase the neutron yield  
by a factor of 4 to 8 and recover the 1-D compression tR 

DRACO simulations* have indicated that a low-density foam layer can mitigate 
laser imprints in direct-drive inertial confinement fusion (ICF)


