Hot-Electron Generation at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

A. A. Solodov *et al.* University of Rochester Laboratory for Laser Energetics 47th Annual Anomalous Absorption Conference Florence, OR 11–16 June 2017

A laser-energy conversion efficiency of ~1% to 3% into hot electrons with T_e ~ 45 to 60 keV was inferred

- Planar-target experiments at the National Ignition Facility (NIF) reproduce direct-drive (DD) ignition-relevant plasma conditions
- The properties of hot electrons were inferred using measured hard x-ray spectra and Monte Carlo simulations
- Hot-electron preheat levels suggest a need for mitigation
- Si ablators are found to increase the intensity threshold for hot-electron production and reduce the preheat by ~50%, compared to the relevant CH target shots

Maximum operating intensities at $n_c/4$: ~4.5 × 10¹⁴ W/cm² in CH and ~6.5 × 10¹⁴ W/cm² in Si

M. J. Rosenberg, J. F. Myatt, W. Seka, R. Epstein, R. W. Short, S. P. Regan, D. H. Froula, P. B. Radha, and V. N. Goncharov

University of Rochester Laboratory for Laser Energetics

J. W. Bates and A. J. Schmitt

Naval Research Laboratory

P. Michel, M. Hohenberger, T. Chapman, and J. D. Moody

Lawrence Livermore National Laboratory

Hot-electron preheat can degrade fuel compression in DD ignition designs

- The ignition target performance is negatively affected if more than ~0.15% of the laser energy is coupled into the cold fuel in the form of hot electrons*
- If electron divergence is large, only ~25% of the hot electrons will intersect the cold fuel and result in preheat**
- Electrons with energy below ~50 keV will be stopped in the ablator and will not preheat the compressed fuel

Hot-electron preheat mitigation is needed if more than ~0.7% of the laser energy is converted to hot electrons at T_{hot} ~50 to 60 keV.

** B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).

Hot-electron divergence will be investigated in Mo-ball experiments on the NIF.

UR

^{*} J. A. Delettrez, T. J. B. Collins, and C. Ye, Bull. Am. Phys. Soc. <u>59</u>, 150 (2014).

Planar NIF experiments explore laser–plasma interaction (LPI) instabilities and hot-electron production in DD ignition-relevant plasma conditions

Coronal conditions predicted by DRACO radiation–hydrodynamic simulations

Parameters at n _c /4 surface	OMEGA*	Current NIF DD**	Ignition NIF DD [†]	Planar NIF
I_{L} (W/cm ²)	$<\!\!4 imes 10^{14}$	4.5 × 10 ¹⁴	6 to 8×10^{14}	5 to 15×10^{14}
L_{n} (μ m)	<350	350	600	500 to 700
T _e (keV)	<2.5	3.5	3.5 to 5	3 to 5

• Incident laser intensity is ~2× intensity at $n_c/4$ at ignition-relevant L_n and T_e

[†]V. N. Goncharov et al., Bull. Am. Phys. Soc. <u>61</u>, BAPS.2016.DPP.TO5.3 (2016).

TC12382d

^{*}S. X. Hu et al., Phys. Plasmas 20, 032704 (2013).,

^{**}M. Hohenberger et al., Phys. Plasmas 22, 056308 (2015).,

Hot-electron production in CH targets and mitigation by the use of Si ablators was explored in NIF planar-target experiments

Optical spectroscopy → signature of two-plasmon decay (TPD) and stimulated Raman scattering (SRS)

- CH and Si disks were irradiated by subsets of NIF beams from the south pole
- Principal measurements included hard x-ray bremsstrahlung to quantify hot-electron production and optical spectroscopy to explore the LPI mechanisms*

*W. Seka et al., WeO-5, this conference; P. A. Michel et al., WeO-4, this conference.

TC13427

The scaling of hot-electron properties with laser intensity in CH targets was studied using large-angle beams

*C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids <u>17</u>, 1211 (1974); A. Simon et al., Phys. Fluids <u>26</u>, 3107 (1983).

TC13049a

Hot-electron properties were inferred using the measured hard x-ray spectra

Time-integrated hard x-ray spectra obtained using FFLEX* **Outer-beam shots (CH)** X-ray emission (keV/keV·sr) **10**¹³ N151118-001 8-002 $\sim 15 \times 10^{14}$ **10**¹² N151117-003 \diamond W/cm² $\overline{\mathbf{A}}$ $\overline{\diamond}$ ~6 × 10¹⁴ 1011 ~10 × 10¹⁴ $\mathbf{\nabla}$ W/cm² W/cm **10**¹⁰ 10⁹ 50 100 150 200 250 300 0 $h\nu$ (keV)

Systematic uncertainties of FFLEX hard x-ray spectra are being investigated

TC13051a

UR

Hot-electron energy was inferred from comparison of the x-ray spectra and EGSnrc* Monte Carlo simulations

- Hot electrons are injected
 - at n_c/4 surface (r < 500 μm)
 - isotropic in the forward 2π solid angle
 - temperature
 T_{hot} = 40 to 60 keV from the
 measured hard x-ray spectra

*I. Kawrakow et al., National Research Council Canada, Ottawa, Canada, NRCC Report PIRS-701 (May 2011).

The inferred laser energy to hot-electron conversion efficiency increases from ~0.5% to 3% with the laser intensity

UR

Hot-electron production in CH and Si targets was studied using small-angle beams

DRACO-simulated coronal conditions at $n_c/4$ (4.5 to 7.5 ns)

	N160719-003 (CH)	N160421-001 (CH)	N160719-001 (Si)
<i>I</i> (W/cm ²)	6 × 10 ¹⁴	11 × 10 ¹⁴	9 × 10 ¹⁴
L_{n} (μ m)	670	690	560
$T_{e} (\text{keV})$	3.6	4.4	5.2

• Two more Si target shots (N161010-001 and N161010-002) explored higher and lower inner-beam intensities

TC13050a

Hot-electron properties were inferred using the measured hard x-ray spectra

• Time-integrated hard x-ray spectra obtained using FFLEX

TC13429

The inferred laser energy to hot-electron conversion efficiency increases from ~0.5% to 3% with the laser intensity

 The use of a Si ablator reduces the energy of hot electrons above ~50 keV (relevant to preheat) by ~50%, compared to the relevant CH shots, and increases the hot-electron–generation intensity threshold

TC13430

The inferred laser energy to hot-electron conversion efficiency increases from ~0.5% to 3% with the laser intensity

Tolerable preheat in ignition designs (current understanding)

TC13432

• Hot-electron preheat is tolerable in DD ignition designs with CH ablators if $I_{n_{c/4}} < 4.5 \times 10^{14} \text{ W/cm}^2$; with Si ablators if $I_{n_{c/4}} < 6.5 \times 10^{14} \text{ W/cm}^2$

Hot-electron production is attributed to stimulated Raman scattering, which dominates LPI in these experiments*

• SRS is excited at a level (\leq 5%) comparable to that of the hot electrons

P. A. Michel et al., WeO-4, this conference.

TC13431

^{*}M. J. Rosenberg et al., WeI-2, this conference;

W. Seka et al., WeO-5, this conference;

A laser-energy conversion efficiency of ~1% to 3% into hot electrons with T_e ~ 45 to 60 keV was inferred

- Planar-target experiments at the National Ignition Facility (NIF) reproduce direct-drive (DD) ignition-relevant plasma conditions
- The properties of hot electrons were inferred using measured hard x-ray spectra and Monte Carlo simulations
- Hot-electron preheat levels suggest a need for mitigation
- Si ablators are found to increase the intensity threshold for hot-electron production and reduce the preheat by ~50%, compared to the relevant CH target shots

Maximum operating intensities at $n_c/4$: ~4.5 × 10¹⁴ W/cm² in CH and ~6.5 × 10¹⁴ W/cm² in Si

