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Unlike absolute stimulated Raman scattering (SRS) at 
quarter-critical density, absolute SRS sidescatter is 
strongly affected by geometry and temperature

• SRS sidescatter is expected to become the dominant form of 
the instability for NIF*-scale direct-drive experiments

• Since for sidescatter the scattered-light wave vector is 
comparable in length to k0, its orientation relative to the 
pump wave vectors significantly affects the coupling  
of the instability

• The absolute thresholds depend on plasma and beam 
geometry in a complicated way

• While general trends can be discerned from one- and two-
beam examples, quantitative multibeam thresholds require 
specific calculations; the formalism presented here is readily 
extended to such calculations

Summary

* NIF: National Ignition Facility



Liu, Rosenbluth, and White pointed out in 1974  
that SRS sidescatter can be absolute in the  
density-gradient direction*
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• The scattered-light wave propagates perpendicular to the density 
gradient in the interaction region, minimizing convection and allowing 
absolute growth

• The instability remains convective in the transverse direction, but if the 
growth is fast enough, and the transverse scale length long enough, the 
instability will saturate through nonlinear effects rather than convection

• Their condition for this is        or  

• This condition is readily satisfied in modern laser–plasma interaction 
experiments

• Recent experiments and simulations indicate that SRS sidescatter may 
be the predominant form of SRS in direct-drive experiments**

  * C. S. Liu, M. N. Rosenbluth and R. B. White, Phys. Fluids 17, 1211 (1974).
**M. J. Rosenberg et al., WeI-2 (invited); P. A. Michel et al., WeO-4; W. Seka et al., WeO-5, this conference. 
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In a linear gradient, the coupled equations for SRS 
sidescatter become a set of first-order ordinary 
differential equations (ODE’s)
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• For a gradient in the x direction, it is found that the interaction 
occurs over a very small range of density

• The equations in k space become (for two beams)
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Numerical integration of these equations gives spatial 
gain; divergent gain indicates absolute threshold

TC13435

5

SRS resonant 
interaction region
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The coupling coefficients depend on the geometry  
and polarization of the pump and scattered waves
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p-polarized pump
 

p-polarized SRS in the x–y plane
kz = 0, in x–y plane:

p-polarized SRS in the x–z plane
ky = 0, k and veu in the x–z plane:

s-polarized SRS
 ky = 0, k in the x–z plane:   

v v ye ey=u u t

s-polarized SRS 
kz = 0, k in the x–y plane

v v ze ez=u u t

s-polarized pump
v0 in z direction

p-polarized SRS, ky = 0, k and
in the x–y plane

s-polarized SRS, kz = 0, k in the 
x–y plane and       in z direction 

p-polarized SRS, kz = 0, k and
in the x–y plane

s-polarized SRS, ky = 0, k in the 
x–y plane and        in the 

y direction
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 Temperature affects in-plane SRS for oblique incidence
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• kd increases with angle between pump and ks, increasing SRS gain

• Phase mismatch between kd1 and kd2 increases with angle and 
temperature, so SRS becomes single beam

• Landau damping increases with temperature and kd, suppressing 
the long-kd branch and also making SRS single beam
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Increasing temperature inhibits two-beam in-plane SRS
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• Phase mismatch caused by Bohm–Gross frequency increases with temperature 
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For small damping, the “back” branch of sidescatter  
has the lowest threshold
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• The mode with the lowest threshold varies with incidence angle 
and polarization, but the “s–s” mode is usually competitive
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Landau damping suppresses the “back” branch  
of “s–s” sidescatter
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• The effect is more pronounced for shorter-wavelength scattering
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For out-of-plane scattering Landau damping results in a 
short-wavelength cutoff and a minimum in the threshold

TC13442

11

• When Landau damping is strong, single-beam “forward”  
in-plane scattering becomes dominant
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Collisional damping has little effect for these parameters
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• For lower temperatures and longer-wavelength scattering 
collisional damping becomes somewhat more significant,  
but does not qualitatively alter the results
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Summary/Conclusions

* NIF: National Ignition Facility

Unlike absolute stimulated Raman scattering (SRS) at 
quarter-critical density, absolute SRS sidescatter is 
strongly affected by geometry and temperature

• SRS sidescatter is expected to become the dominant form of 
the instability for NIF*-scale direct-drive experiments

• Since for sidescatter the scattered-light wave vector is 
comparable in length to k0, its orientation relative to the 
pump wave vectors significantly affects the coupling  
of the instability

• The absolute thresholds depend on plasma and beam 
geometry in a complicated way

• While general trends can be discerned from one- and two-
beam examples, quantitative multibeam thresholds require 
specific calculations; the formalism presented here is readily 
extended to such calculations


