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Planar experiments at the National Ignition Facility (NIF) 
have investigated laser–plasma interaction (LPI) 
hot-electron production at direct-drive ignition-relevant 
coronal conditions

Summary

E25565b

• NIF planar experiments achieve ignition-relevant scale lengths 
(Ln ~ 400 to 700 nm) and electron temperatures (Te ~ 4 to 5 keV)

• The fraction of laser energy converted to hot electrons 
increased with laser intensity from fhot ~0.5% to 2.3%— 
from 6 to 15 × 1014 W/cm2—while Thot was ~50 keV

• Stimulated Raman scattering (SRS) is inferred to be the 
dominant hot-electron source at these conditions

• The use of Si ablators reduces the observed SRS, fhot, and Thot 
relative to CH, using small angle beams
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These results indicate a viable ignition-design space for direct drive.
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Outline
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• Motivation for direct-drive planar LPI experiments on the NIF 
and platform development

• Hot-electron and scattered-light results: dominance of SRS

• LPI/hot-electron preheat mitigation strategies and future work

4



Outline

E26059a

• Motivation for direct-drive planar LPI experiments on the NIF 
and platform development

• Hot-electron and scattered-light results: dominance of SRS

• LPI/hot-electron preheat mitigation strategies and future work

5



The National Direct-Drive Program includes OMEGA 
and NIF experiments to study direct-drive physics

TC10256w
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Motivation

Laser coupling, preheat, imprint, and
hydrodynamically scaled implosions

Laser coupling, preheat, 
and imprint at the MJ scale

Direct drive
NIF 1.8 MJ

3.6 mm

0.86 mm 

OMEGA 26 kJ

Scale 1:70
in energy



Hot-electron preheat is a potential concern 
for direct-drive–ignition designs 

E26313
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Motivation

Limit of ~0.15% laser energy into fuel preheat + angular divergence 
" limit of ~0.7% laser energy into hot electrons generated.

DT fuel 

Direct-drive implosion

LPI hot electrons,
some go into DT fuel
(wide angular divergence,
according to OMEGA
experiments*) 

CH
ablator

nc/4 surface

Laser intensity attenuated
by ~2× at nc/4 

*B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).
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Motivation

Direct-drive (DD)–ignition designs predict long density 
scale lengths and high electron temperatures under 
which LPI may occur

One-dimensional simulated plasma conditions for an igniting direct-drive design

Experiments must be performed at these conditions to understand 
LPI and assess hot-electron levels at the NIF/ignition scale.
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Motivation

Currently, ignition-relevant coronal plasma conditions 
can only be achieved in NIF planar experiments

Two-dimensional DRACO simulated plasma conditions at nc/4

NIF ignition 
designs

Ongoing 
NIF planar 

experiments

Ongoing NIF
implosions

OMEGA
implosions

Ln (nm) 600  400 to 700 360 150

Te (keV) 3.5 to 5 3 to 5  3.2 2.8

IL (W/cm2) (6 to 8) × 1014 (6 to 15) × 1014 5 × 1014 (5 to 7) × 1014

Note: incident laser intensity is ~2× larger than intensity at nc/4 
at ignition-relevant conditions because of absorption



Two initial planar experiments were performed 
on the NIF to constrain plasma conditions

E24122e
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The isoelectronic ratio* of the Mn/Co K-shell emission 
lines is used to infer Te = 4.6!1.1 keV at nc /4

*R. Marjoribanks et al., Phys. Rev. A 46, R1747 (1992).
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Does not account
for CH emission

5
0.01

0.10

1

10

100

0

1

2

3

4

5

6

7

Mn Hea
Mn Ha

Co Hea +
Mn Heb

Co Hea +
Mn Heb

7

Energy (keV) Time (ns)

Measured Te at microdot

T e
 (

ke
V

)

8 0 1 2 3

Microdot
around

nc /4

4 5

Shot N150520: 23° and 30° beams

DRACO/Spect3D
Measured

N150520
N150521
DRACO (N150520)

Density = nc /10Density = nc /10

11

Based on modeling, discrepancy can be partially explained by self-heating of the microdot.



In subsequent experiments at higher laser intensity, 
the wavelength of ~/2 emission was used to infer 
Te ~ 4.5 keV at nc/4

E25695a
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W. Seka et al., Phys. Fluids 28, 2570 (1985).

These measurements match DRACO predictions of ignition-relevant Te = 4.5 keV.
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Three experiments explored the scaling of hot-electron 
properties with laser intensity at ~500-nm scale lengths 
and ~4-keV temperatures

Primary diagnostics

• Hard x ray " Thot, Ehot/fhot
• ~/2 and SRS " LPI signatures

E24812i

nc/4 parameter DD ignition* Planar NIF**

IL (W/cm2) 6 to 8 × 1014 6 to 15 × 1014

Te (keV) 4 keV 4 keV

Ln (nm) 550 nm 500 nm

 *T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).
**A. A. Solodov, this conference.
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Considering overlapped laser intensities, these 
experiments are well above threshold for two-plasmon 
decay (TPD) and SRS

E26296
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• Absolute instability thresholds for a single beam at normal incidence 

**A. Simon et al., Phys. Fluids 26, 3107 (1983).
**C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).
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Time-integrated hard x-ray data show fhot (Ehot/Elaser) 
increases with laser intensity, while Thot is constant

E24813e
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 *W. Seka et al., Phys. Rev. Lett. 112, 145001 (2014).
**Near-backscatter imager

If TPD is dominant, expect to see broad spectral features at ~/2, 
as have been observed previously on OMEGA.*

View along target normal is optimal for ~/2  
since most emission occurs within ~10° of normal*
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Scattered-light measurements to identify the  
hot-electron source were optimized by orienting  
the target normal to the optical diagnostics 



The optical spectrum indicates a sharp, red-shifted ~/2 
feature as well as SRS at shorter wavelengths

E25567e
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The ~/2 feature observed on the NIF is in contrast 
to that observed on OMEGA, which showed both 
blue- and red-shifted  ~/2, and is attributed to TPD
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W. Seka et al., WeO-5, this conference.

On the NIF, the observed ~/2 emission is attributed to absolute SRS, 
although the presence of TPD cannot yet be ruled out.
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The dominance of SRS at the NIF scale is explained by 
evaluating the absolute thresholds of SRS* versus TPD** 

 *A. Simon et al., Phys. Fluids 26, 3107 (1983).
**C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).
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Further evidence that SRS is the hot-electron source 
can be obtained by inferring the total SRS produced

E25568c

Extrapolating to the total SRS requires understanding the SRS mechanism.
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Diagnostic views are limited: 
absolute energy measurements 
are available at two locations

CH

Optical streaked 
spectrometers



Observation of SRS at multiple locations 
from different drive beams provides strong 
evidence of SRS sidescattering

E25568d
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This observation is explained by tangential SRS 
sidescatter, which allows for SRS observation at large 
angles and wavelength independent of drive-beam angle

E26063b
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P. A. Michel et al., WeO-4, this conference.
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Knowledge of SRS mechanisms—absolute SRS (~/2) 
and sidescattered SRS—allows for extrapolation to the 
total SRS generated

E26166a
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Approximately 5% of  laser energy converted to SRS 
is consistent with the observed hot-electron fraction.
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The use of a Si layer in the ablator has been proposed 
as a means of reducing hot-electron generation from 
near-quarter-critical LPI

TC10544h

Si ablators produce shorter scale lengths, higher electron temperatures, 
and more collisional damping in order to reduce LPI near nc/4.

Direct-drive ignition design with multilayer ablator*

26

NIF

        11- to 14-nm CHSi (6%)
      1- to 2-nm mid-Z (Z = 6 to 14, Si)
   6-nm Be
125-nm DT

1350 nm

*V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
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Use of a Si ablator in planar experiments 
causes a reduction in observed SRS driven 
by small-angle beams, relative to CH

27
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In comparison to the CH target, the Si target 
produced an ~30% lower fhot and an ~15 keV 
lower Thot for small-angle-beam drive

E26299

28

3.0

2.5

3.5

2.0

1.5f h
o

t 
(%

)

1.0

0.5

0.0

fhot versus laser intensity at nc/4

0.0 1.0 1.5 2.00.5

60
70
80

50
40
30T h

o
t 
(k

eV
)

20
10
0

Thot versus laser intensity at nc/4

0.0 1.0 1.5 2.00.5

Minimal hot electrons with
an Si ablator at 6 × 1014 W/cm2

Ignition design
fhot limit

(current understanding)

CH inner
after 4.5 ns
Si inner
after 4.5 ns

Laser intensity (×1015 W/cm2) Laser intensity (×1015 W/cm2)



The new optical Thomson-scattering (OTS) diagnostic 
on the NIF will be used to probe 3~/2 emission 
and to measure plasma conditions

E26064a
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These experiments will assess the presence of TPD, confirm 
plasma conditions, and develop a platform for eventual use 
of 5~ Thomson scattering (TS) to probe plasma waves.

Future Work

OTS
spectrometer

CH

3~ OTS
probe beam

Looking for 3~/2 and probing thermal waves near nc/4

Experiments on 16 August 2017



Coupling of hot electrons to an implosion will be 
assessed by measuring their angular divergence 
using buried Mo layers

E21989b
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These NIF experiments will determine the relationship between hot-electron 
generation and the expected level of preheat in ignition-relevant implosions.

Future Work

N2
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CH CH
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indicated a wide angular divergence in the TPD regime.

*B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).
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Summary/Conclusions
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Planar experiments at the National Ignition Facility (NIF) 
have investigated laser–plasma interaction (LPI) 
hot-electron production at direct-drive ignition-relevant 
coronal conditions

• NIF planar experiments achieve ignition-relevant scale lengths 
(Ln ~ 400 to 700 nm) and electron temperatures (Te ~ 4 to 5 keV)

• The fraction of laser energy converted to hot electrons 
increased with laser intensity from fhot ~0.5% to 2.3%— 
from 6 to 15 × 1014 W/cm2—while Thot was ~50 keV

• Stimulated Raman scattering (SRS) is inferred to be the 
dominant hot-electron source at these conditions

• The use of Si ablators reduces the observed SRS, fhot, and Thot 
relative to CH, using small angle beams

These results indicate a viable ignition-design space for direct drive.
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Despite varying plasma conditions in a NIF experiment using 
a ramped laser pulse, a similar SRS spectrum is obtained

E25962b
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SRS depends strongly on inner-beam laser intensity 
in CH ablators

E25965a
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For an Si ablator, the SRS intensity at 23° depends 
strongly on inner-beam laser intensity, but SRS 
observed at 50° is still minimal

E25967a
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Compared to the CH target, the Si target produced 
an ~40% lower fhot and an ~15-keV lower Thot 
for small-angle-beam drive

E25733b
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Post-shot DRACO-simulated conditions at nc/4*

Shot N150520: 23° and 30° beams Shot N150521: 45° and 50° beams
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*A. A. Solodov et al., presented at the Ninth International Conference on Inertial 
     Fusion Sciences and Applications (IFSA 2015), Seattle, WA, 20–25 September 2015
**A. Simon et al., Phys. Fluids 26, 3107 (1983);

    C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).

The empirical TPD and theoretical SRS thresholds** are exceeded 
in this experimental design: hTPD = I14 Ln,nm/(230 Te,keV) ~ 4 to 5, 
hSRS = I14 Ln,nm /2377 ~ 10 to 13.4/3
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Shot N150521: 45° and 50° beams
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Hard x-ray and Mo Ka emission caused by LPI-generated 
hot electrons were observed
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Time-integrated hard x-ray spectra indicate 
Thot ~ 45!5 keV, fhot ~ 1% for both experiments
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The beam angle of incidence did not have a strong effect on fhot and Thot.

*A. A. Solodov et al., presented at the Ninth International Conference on Inertial Fusion Sciences 
and Applications (IFSA 2015), Seattle, WA, 20–25 September 2015.
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This observation is explained by tangential SRS 
sidescatter, which allows for SRS observation at large 
angles and wavelength independent of drive-beam angle

E26063a

• Tangential sidescatter exit angle does not depend on the incidence angle
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 P. A. Michel et al., WeO-4, this conference. 
*Full-aperture backscatter station
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