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2-D HYDRA simulations accurately model the implosion 
velocity at the center of the implosion region

• X-ray images of laser-driven cylindrical implosions were recorded along 
the radial direction without a preheat beam or applied magnetic field

• Two-dimensional HYDRA simulations of the experiment including 
measured beam pointing and 3-D ray tracing were performed

• Quantitative analysis of experimental and simulated x-ray images provide 
a measurement of implosion velocity and uniformity of implosion
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Summary

Analysis technique will be applied to laser-driven, integrated MagLIF* 
shots (preheat beam, applied magnetic field) on OMEGA.

*MagLIF: magnetized liner inertial fusion
S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).
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The goal is to diagnose integrated shots on OMEGA 
that use compression beams, a preheat beam,
and axial magnetic fields
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*MIFEDS: magneto-inertial fusion electrical discharge system
G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015).

 Analysis has been applied to implosion-only shots (no preheat, no field).

Parylene-N cylindrical target

40 radial compression beams, 2-ns pulse

Preheat
beam

achieves
>100 eVMIFEDS* coils

provide B-field
up to 10 T



X-ray framing camera (XRFC) data are used to determine 
x-ray velocity and curvature of the shell from self-emission
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 X-ray velocity and shell implosion velocity are approximately equal.
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Implosion velocity is calculated from the slope of the 
best-fit line to the emission peak position versus time
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One dimensional LILAC with 2-D ray tracing requires the 
laser power to be reduced by a factor of 2 to match velocity 
because the angle of incidence is not taken into account
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v = 13.563 * PL

• For shot 79499, v = 178.7 km/s, PL = 77.68 TW/cm

• LILAC power law " PL = 37.63 TW/cm, 48.45%
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Measured beam pointing is used with 3-D ray tracing 
to simulate implosions in 2-D HYDRA
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Velocity from HYDRA is consistent 
with velocity from XRFC
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Higher average implosion velocity correlates 
with higher average neutron yield
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The radius of curvature of x-ray emission is calculated 
to determine flatness
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• An example from a 2-D 
HYDRA simulation

• Curvature can be defined as l(z) = ;rm(z);/[1 + rl(z)2]3/2

 Change in curvature over time determines uniformity of implosion velocity.

500 nm



Thinner shells show smaller radius of curvature, 
but slower change in radius of curvature over time
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Shot-averaged curvature results from HYDRA 
are not consistent with XRFC data
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*CBET: cross-beam energy transfer
J. F. Myatt et al., Phys. Plasmas 24, 056308 (2017).

 CBET* may be altering energy in outer beams resulting in this discrepancy.



Discrepancies between simulations and experiment 
allude to physical processes that should be considered 
for future simulation and experimental design
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1-D LILAC 2-D HYDRA

Model center of implosion Model shape of implosion

Measure implosion velocity Measure implosion velocity 
and curvature

Use laser power reduced by 50% Use experimental laser power 
and beam pointing

No axial losses, no angle
of incidence

Outer regions modeled 
inaccurately, current 
hypothesis is CBET
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Summary/Conclusions

2-D HYDRA simulations accurately model the implosion 
velocity at the center of the implosion region

Analysis technique will be applied to laser-driven, integrated MagLIF* 
shots (preheat beam, applied magnetic field) on OMEGA.

*MagLIF: magnetized liner inertial fusion
S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).

• X-ray images of laser-driven cylindrical implosions were recorded along 
the radial direction without a preheat beam or applied magnetic field

• Two-dimensional HYDRA simulations of the experiment including 
measured beam pointing and 3-D ray tracing were performed

• Quantitative analysis of experimental and simulated x-ray images provide 
a measurement of implosion velocity and uniformity of implosion


