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A 3-D wave-based model has been developed to
understand the physics of cross-beam energy transfer

(CBET) in an inhomogeneous plasma
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e Detailed CBET calculations are used to test ray-based CBET
models that are implemented in hydrodynamics codes

* The comparisons generally highlight the accuracy of
ray-based models

* Discrepancies between the models are found related to
beam speckle and polarization smoothing

Ray-based models calculate CBET by considering

pairwise interactions between rays
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CBET interaction between
plane waves in a
homogeneous plasma

Schematic of ray-
interaction calculation
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Ray-based CBET models make several approximations
that are not always satisfied in inertial confinement
fusion (ICF) applications

lon-acoustic waves (IAW’s) (6,/n < 1)
Steady-state convective gain
Polarization-averaged coupling constant
Pairwise coupling between beams

Local plane-wave approximation
— not valid for speckled beams or at caustics

\ Approximations that
are not made in LPSE

Eikonal approximation
[Wentzel-Kramers—Brillouin (WKB), envelope]

— breaks down at caustics
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LPSE solves the time-enveloped Maxwell’s equations

coupled to a linearized plasma response
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* Maxwell’s equations (time enveloped) E =%{E(X,t)exp(-ic,t)}
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Ray- and wave-based CBET models give the same
result in simple interaction geometries
(plane-wave beams, no caustics)
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All of the approximations made in the ray model
are satisfied in this configuration.
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Speckled beams can transfer more energy than

plane-wave beams with the same average intensity
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LPSE simulation of counter-
propagating speckled beams

(Ipump = 2 x 1015 W/ecm?2, Iggeq = 1012 W/cm?2)
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The CBET gain is sensitive to beam speckle for gains

greater than ~1 and relative beam angles of less than ~30°
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Gain — Iog(Seed energy out)

Seed energy in

CBET gain versus pump intensity for various beam-relative beam angles
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A good approximation to the average CBET between
speckled beams can be obtained by using the linearity
of Maxwell’s equations to solve for the correct

unperturbed field amplitudes in the ray-based calculation
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Outgoing pump beam
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The speckled ray approach reproduces LPSE results
to within one standard deviation of the average
over realizations
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This could be a viable approach for including
£2619 speckle effects in ray-based CBET models.
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Speckled beams result in a modest decrease in laser
absorption in OMEGA-scale, two-beam LPSE simulations

at ICF-relevant plasma conditions
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OMEGA-scale LPSE simulations (Igingle beam = 2 x 1014 W/cm2)
in a LILAC plasma profile (1.6 billion grid cells)

Plane-wave beams Speckled beams
(86% absorption) (82.8% absorption)
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Polarization smoothing is accounted for in ray-based
CBET models by multiplying the gain coefficient by a
factor of (1 + cos20)/4*
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Polarization smoothing is e The factor of (1+co0s260)/4
implemented on the NIF** by splitting comes from assuming that
the polarization within each quad the interacting beams have
Upper hemisphere quads’ random relative polarizations
(0, ¢) geometry with uncorrelated speckle
' patterns and ensemble
¥ . averaging over realizations
BB o when deriving the
o787 ‘ ' ponderomotive potential
: 8. -348-75. : of the beat wave

|9 F) = 4(1+cos20)6

]
264.375 |

Quads’ |
polarization Xm
arrangement /m

*P. Michel et al., Phys. Plasmas 20, 056308 (2013).

E26200 **NIF: National Ignition Facility

The factor of (1+c0s20)/4 used to account for the
modification of the CBET gain between beams with
polarization smoothing is valid only when the speckle

length is shorter than the interaction region*
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CBET gain versus relative beam angle for beams with polarization
smoothing averaged over 12 realizations of polarization/phase
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E26201 *P. Michel et al., Phys. Plasmas 20, 056308 (2013).




A 3-D wave-based model has been developed to
understand the physics of cross-beam energy transfer

(CBET) in an inhomogeneous plasma
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* Detailed CBET calculations are used to test ray-based CBET
models that are implemented in hydrodynamics codes

e The comparisons generally highlight the accuracy of
ray-based models

* Discrepancies between the models are found related to
beam speckle and polarization smoothing
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Ray-based models calculate CBET by considering

pairwise interactions between rays
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CBET interaction between
plane waves in a
homogeneous plasma

Schematic of ray-
interaction calculation
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Ray-based CBET models make several approximations
that are not always satisfied in inertial confinement
fusion (ICF) applications
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e lon-acoustic waves (IAW’s) (6,/n < 1)

o Steady-state convective gain A

* Polarization-averaged coupling constant

e Pairwise coupling between beams

* Local plane-wave approximation \ Approximations that

— not valid for speckled beams or at caustics | 2'€ notmade in LPSE

* Eikonal approximation
[Wentzel-Kramers—Brillouin (WKB), envelope]

— breaks down at caustics
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LPSE solves the time-enveloped Maxwell’s equations

coupled to a linearized plasma response
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Ray- and wave-based CBET models give the same
result in simple interaction geometries
(plane-wave beams, no caustics)
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All of the approximations made in the ray model
Costos are satisfied in this configuration.




Speckled beams can transfer more energy than

plane-wave beams with the same average intensity
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LPSE simulation of counter-
propagating speckled beams

(Ipump = 2 x 1019 W/em?2, Igoeq = 1012 W/ecm?2)
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The CBET gain is sensitive to beam speckle for gains

greater than ~1 and relative beam angles of less than ~30°
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Gain — Iog( Seed energy out)

Seed energy in

CBET gain versus pump intensity for various beam-relative beam angles
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A good approximation to the average CBET between
speckled beams can be obtained by using the linearity
of Maxwell’s equations to solve for the correct
unperturbed field amplitudes in the ray-based calculation
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The speckled ray approach reproduces LPSE results
to within one standard deviation of the average

over realizations
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This could be a viable approach for including
speckle effects in ray-based CBET models.




Speckled beams result in a modest decrease in laser
absorption in OMEGA-scale, two-beam LPSE simulations

at ICF-relevant plasma conditions
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OMEGA-scale LPSE simulations (Igjngle beam = 2 x 1014 W/cm?)
in a LILAC plasma profile (1.6 billion grid cells)

Plane-wave beams Speckled beams
(86% absorption) (82.8% absorption)
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Polarization smoothing is accounted for in ray-based
CBET models by multiplying the gain coefficient by a
factor of (1 + cos20)/4*
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Polarization smoothing is * The factor of (1+c0s20)/4
implemented on the NIF** by splitting comes from assuming that
the polarization within each quad the interacting beams have
Upper hemisphere quads’ random relative polarizations
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*P. Michel et al., Phys. Plasmas 20, 056308 (2013).
E26200 **NIF: National Ignition Facility



The factor of (1+c0s260)/4 used to account for the
modification of the CBET gain between beams with
polarization smoothing is valid only when the speckle
length Is shorter than the interaction region*
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CBET gain versus relative beam angle for beams with polarization
smoothing averaged over 12 realizations of polarization/phase
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*P. Michel et al., Phys. Plasmas 20, 056308 (2013).




