Kinetic Analysis of Convective Stimulated Raman Scattering and its Potential as a Temperature Diagnostic

R. W. Short, W. Seka, and J. F. Myatt University of Rochester Laboratory for Laser Energetics 46th Annual Anomalous Absorption Conference Old Saybrook, CT 1–6 May 2016

Stimulated Raman Scattering (SRS) spectra show promise as a plasma temperature diagnostic

- The "Landau cutoff" has long been used as a temperature diagnostic, but is somewhat ambiguous (should it be $k\lambda_D = 0.2? 0.25? 0.3?$)
- Recent advances in obtaining detailed time-resolved SRS spectra make it desirable to employ a more-detailed kinetic model of these spectra
- The peak of the SRS gain curve and the peak of the observed SRS spectra are more easily identified than the "cutoff"
- Preliminary results show good agreement between temperatures obtained from the peak of the observed spectrum and the peak of the gain curve
- The gain does not show a well-defined peak above ~4 keV; a more-detailed analysis of the shape of the gain curve may provide a diagnostic of temperatures in this range

Multiple pump beams can drive a common plasma wave in convective SRS

- All pump polarizations contribute for a common plasma wave: the polarization of each \vec{k}_{sj} matches that of the corresponding \vec{k}_{0j}
- In 3-D, the common wave will be the centroid of a cone

UR

SRS is used as a coronal T_e diagnostic for polar-direct-drive (PDD) implosions at the National Ignition Facility (NIF)

Temperatures are estimated by identifying the lower boundary of the spectrum with the Landau cutoff.

TC12809

The Landau cutoff interpretation of the lower SRS wavelength limit varies with assumed sidescatter angle

The temperature inferred from the Landau cutoff is sensitive to the assumed maximum of $k\lambda_D$

The SRS gain curve may provide a more-accurate estimate of temperature than the Landau cutoff

- While the "cutoff" provides a rough estimate of temperature, it is vaguely defined, both theoretically and observationally; a more-precise diagnostic is desirable
- In 1984, W. Seka et al.,* attempted to use kinetic calculations of SRS gains as a temperature diagnostic; results were mixed, probably because of filamentation
- Currently, filamentation is suppressed by smoothing by spectral dispersion (SSD), and improved spectral resolution is available
- The maximum of the observed spectrum and the maximum of the gain curve are more readily identified and may provide a more-reliable temperature diagnostic

*W. Seka et al., Phys. Fluids <u>27</u>, 2181 (1984).

The gain is calculated using a three-wave model of SRS combined with a kinetic electron susceptibility

- This approach was first used by W. Seka et al.,* for backscatter; here it is generalized to allow for sidescatter
- The SRS gain is given by $G_{SRS} = \int \left(\frac{v_0}{c}\right)^2 \left(\frac{k_p^2}{k_s}\right) Im \left[\frac{1}{1 \chi_e(k_p, \omega_p)}\right] dx'$ with $\chi_e(k_p, \omega_p) = -\frac{\omega_{pe}^2}{2k_p^2 v_T^2} Z' \left(\frac{\omega_p}{\sqrt{2} k_p v_T}\right)$
- The gain is limited at long wavelengths by smaller resonance lengths and higher absorption and at short wavelengths by Landau damping
- This results in a single-peaked gain curve for SRS as a function of scattered wavelength
- Direct-drive SRS levels are low; linear theory suffices for spectral modeling

*W. Seka et al., Phys. Fluids <u>27</u>, 2181 (1984).

The peak of the gain curve shifts to longer wavelengths as the electron temperature increases

• The location of the peak is relatively insensitive to the magnitude of the gain

TC12813

The gain peak shifts to shorter wavelengths at larger angles of incidence

The SRS gain peak location is a nearly linear function of temperature

TC12815

Temperatures obtained from spectral peaks agree well with simulation results

 $G_{SRS,SB^*} < 1$ for $L_n \sim 300 \ \mu m$, $T_e \sim 3 \ keV$ (backscatter) (even for 5× enhancement for speckle intensity)

*single beam

LL

Stimulated Raman Scattering (SRS) spectra show promise as a plasma temperature diagnostic

- The "Landau cutoff" has long been used as a temperature diagnostic, but is somewhat ambiguous (should it be $k\lambda_D = 0.2? 0.25? 0.3?$)
- Recent advances in obtaining detailed time-resolved SRS spectra make it desirable to employ a more-detailed kinetic model of these spectra
- The peak of the SRS gain curve and the peak of the observed SRS spectra are more easily identified than the "cutoff"
- Preliminary results show good agreement between temperatures obtained from the peak of the observed spectrum and the peak of the gain curve
- The gain does not show a well-defined peak above ~4 keV; a more-detailed analysis of the shape of the gain curve may provide a diagnostic of temperatures in this range

