The Influence of Smoothing by Spectral Dispersion on Cross-Beam Energy Transfer

OMEGA cryogenic implosions: ~860 μm diam, 8 to 10 μm CH, ~60 μm DT ice

W. Seka
University of Rochester
Laboratory for Laser Energetics

46th Annual Anomalous Absorption Conference
Old Saybrook, CT
1–6 May 2016
Scattered-light powers and absorption are essentially unaffected by smoothing by spectral dispersion (SSD) bandwidth

- Scattered-light spectra are qualitatively affected by large SSD bandwidth (1 THz)
- Scattered-light spectra for $\lesssim 0.3$-THz SSD bandwidth are only minimally affected
- Hydrodynamic (LILAC) predictions for scattered-light powers and absorption are very close to experimental observations
- Predicted scattered-light spectra for $\lesssim 0.3$ THz are close to experimental observations
- For 1-THz SSD the measured spectral shifts indicate cross-beam energy transfer (CBET) occurs at higher densities without affecting scattered powers and absorption
Collaborators

University of Rochester
Laboratory for Laser Energetics
Broadband SSD can influence the CBET interaction region (density)

Optimum CBET region depends on color combinations near Mach = 1 (~n_c/4)

- Flow and density gradient are generally antiparallel
- As a result of electromagnetic (EM) seeding, only very small stimulated Brillouin scattering (SBS) gains are required
SSD at 0.3 THz smooths the scattered-light spectra but hardly affects the overall spectral shapes or scattered-light powers

Experimental scattered-light spectra are inherently broadened by the plasma by

- Dewandre shifts caused by different time-dependent ray paths in the corona (most effective at early times)
- Self-phase modulation, SBS forward scattering, filamentation, etc., in the plasma
Basically, 0.3-THz SSD does not affect the measured spectral shapes, powers, or integrated absorption values.

\[
0.3-\text{THz SSD}, I_{14} = 7.2
\]

\[
\text{No SSD, } I_{14} = 6.5
\]

Experimental absorption = 68%
One-dimensional hydrodynamic simulations (*LILAC*) very well reproduce scattered-light powers and energies.
Scattered-light powers for 0.3- and 0-THz SSD are practically indistinguishable

- **0.3-THz SSD, $I_{14} = 7.2$**
 - Red shift
 - Experimental spectrum
 - $\log(I)$
 - 50 5% contours

- **No SSD, $I_{14} = 6.5$**
 - Experimental spectrum
 - $\log(I)$
 - 50 5% contours

Experimental absorption = 68%

- **LILAC absorption** = 70%

- **LILAC absorption** = 72%

- Power normalized to incident

- Time (ns)
LILAC also very well reproduces the scattered-light spectra for 0- and 0.3-THz SSD

0.3-THz SSD, $I_{14} = 7.2$

Red shift

Experimental spectrum

$\Delta \lambda$ (Å)

$\log (I)$

50 5% contours

Experimental absorption = 68%
LILAC absorption = 70%

LILAC simulation

0 1 2

Time (ns)

No SSD, $I_{14} = 6.5$

Experimental spectrum

$\Delta \lambda$ (Å)

$\log (I)$

50 5% contours

Experimental absorption = 68%
LILAC absorption = 72%

LILAC simulation

0.3-THz SSD, $I_{14} = 7.2$

Red shift

Experimental spectrum

$\Delta \lambda$ (Å)

$\log (I)$

50 5% contours

Experimental absorption = 68%
LILAC absorption = 70%

LILAC simulation

0 1 2

Time (ns)

No SSD, $I_{14} = 6.5$

Experimental spectrum

$\Delta \lambda$ (Å)

$\log (I)$

50 5% contours

Experimental absorption = 68%
LILAC absorption = 72%

LILAC simulation

0 1 2

Time (ns)
LILAC also very well reproduced the scattered-light spectra for 0- and 0.3-THz SSD.

0.3-THz SSD, $I_{14} = 7.2$

Experimental spectrum

$\Delta \lambda (\AA)$

Red shift

$\log (I)$

Experimental absorption = 68%

LILAC absorption = 70%

LILAC simulation

$\Delta \lambda (\AA)$

0 1 2

Time (ns)

-4 -2 0

50 50 50 50

50 50 50 50

50 5% contours

No SSD, $I_{14} = 6.5$

Experimental spectrum

$\log (I)$

3 2

Experimental absorption = 68%

LILAC absorption = 72%

LILAC simulation

0 1 2

Time (ns)

-4 -2 0

50 50 50 50

50 50 50 50

50 5% contours
Experimental and simulated scattered-light spectra are very close for medium \((7 \times 10^{14})\)- and high \((10^{15})\)-irradiation intensities.

Experimental absorption = 62 \(\pm\) 3%

LILAC absorption = 63%

LILAC simulation

- **0.3-THz SSD,** \(I_{14} = 10.3\)
- **No SSD,** \(I_{14} = 10.1\)

Experimental absorption = 64%

LILAC absorption = 65%
Experimental and simulated scattered-light spectra are very close for medium \((7 \times 10^{14})\)- and high \((10^{15})\)-irradiation intensities.

\[\text{Red shift} \]

\[\Delta \lambda (\text{A}) \]

\[\text{Experimental absorption} = 62 + 3\% \]

\[\text{LILAC absorption} = 63\% \]

\[\text{LILAC simulation} \]

\[\text{Experimental absorption} = 64\% \]

\[\text{LILAC absorption} = 65\% \]

\[\text{LILAC simulation} \]
Scattered-light spectra, powers, and absorption depend very weakly on SSD bandwidth (≈ 0.3 THz) even at higher intensities.

- The spectral widths of scattered-light spectra are only slightly larger for 0.3-THz SSD compared 0 THz.
- Time-integrated absorption does not depend on SSD bandwidth.
- The scattered-light powers with and without SSD are basically identical.
CBET spectra are sensitive to density at the interaction region for high SSD bandwidths

1-THz SSD, $I_{14} = 8$
- 54926 H13
- 50 10% contours
- 864 μm (9.7-μm wall, 66-μm ice)
- CD target

0.3-THz SSD, $I_{14} = 7.2$
- 80807 H13
- 50 5% contours
- 877 μm (8-μm wall, 51-μm ice)
- CH target

No SSD, $I_{14} = 6.5$
- 80811 H13
- 50 5% contours
- 877 μm (8-μm wall, 51-μm ice)
- CH target

Standard OMEGA cryogenic implosions
1-THz SSD shows sensitivity of scattered light spectra to the density in the CBET interaction region.
The scattered-light powers and absorption are surprisingly independent of SSD bandwidth (0 versus 1 THz)

1-THz SSD, $I_{14} = 8$

1-THz SSD, $I_{14} = 8.1$

Experimental absorption = 71%

Experimental scattered light

Experimental absorption = 69%

SG4, 868 (33)-μm CH target, 17.1 kJ
For 1-THz SSD, the centroid of the scattered-light spectrum is shifted but the 5% contour is extremely well modeled by LILAC.
Summary/Conclusions

Scattered light powers and absorption are essentially unaffected by smoothing by spectral dispersion (SSD) bandwidth

- Scattered-light spectra are qualitatively affected by large SSD bandwidth (1 THz)
- Scattered-light spectra for ≤ 0.3-THz SSD bandwidth are only minimally affected
- Hydrodynamic (LILAC) predictions for scattered-light powers and absorption are very close to experimental observations
- Predicted scattered-light spectra for ≤ 0.3 THz are close to experimental observations
- For 1-THz SSD the measured spectral shifts indicate cross-beam energy transfer (CBET) occurs at higher densities without affecting scattered powers and absorption