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Transmitted laser intensity at n = 0.17 nc (from HLIP)
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Laser–plasma instabilities below the quarter-critical 
surface are important in shock ignition

Summary

TC12764

• Particle-in-cell (PIC) and fluid simulations find that stimulated 
Brillouin scattering (SBS) and stimulated Raman scattering (SRS) 
in the low-density region can cause significant pump depletion of 
the ignition pulse in shock ignition

• SBS is reduced by the plasma flow

• New simulations with both realistic seed levels and nonlinear 
physics are needed
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The 40 + 20 spherical shock-ignition experiment on 
OMEGA used separate compression and ignition beams  

TC12736

• 60 OMEGA beams were split into 40 low-intensity drive beams 
(~14 kJ) and 20 tightly focused, delayed beams (~5 kJ)

Target design and laser pulse shape*

*W. Theobald et al., Phys. Plasmas 19, 102706 (2012).
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Simulation parameters similar to the 40 + 20-beam  
shock-ignition (SI) experiments on OMEGA* 

TC12737

• Ln = 170 nm

• Ux/c = 4.26 × 10–6 x (nm) – 0.00356

• Two temperatures:

Te/Ti = 3.5 keV/1.6 keV = 2.2 (HT)

Te/Ti = 1.6 keV/0.55 keV = 2.9 (LT)

• I = (2 to 20) × 1015 W/cm2

  HT: high temperature
  LT: low temperature
 * W. Theobald, et al., Phys. Plasmas 19, 102706 (2012).
 ** R. Yan, J. Li, and C. Ren, Phys. Plasmas 21, 062705 (2014).

Typical plasma profile 
in shock ignition**
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6

Ion-density fluctuation
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In a conventional inertial confinement fusion (ICF) 
scheme, laser–plasma interactions (LPI’s) at nc/4  
reach a steady state

TC12738

• I = 6 × 1014 W/cm2  
L = 150 nm 
Te = 3 keV 
Ti = 1.5 keV  
n = 0.21 to 0.27 nc

• Hot electrons are 
staged, accelerated 
from left to right

• Collisions  
can reduce  
hot electrons

R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012).
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Interplay of the modes at different densities leads to 
intermittent LPI activities at SI intensities

TC12739

• I = 2 × 1015 W/cm2 
L = 170 nm 
n = 0.17 to 0.33 nc

– low T: Te = 1.6 keV 
 Ti = 0.55 keV

– high T: Te = 3.5 keV
  Ti = 1.6 keV

• Significant pump depletion 
is seen at nc/4

 R. Yan, et al., Phys. Plasma 21, 062705 (2014).

GEx H in x–t2

Low T

8

0.0000

0.0001

0.0002

0.0003

0.0004

6

4

2

0

20t 
(p

s)

15

10

5

0
0 500 1000 1500

High T

(mec~0/e)2

x(c/~0)

0.0000

0.0001

0.0002

0.0003

0.0004

7



A single Maxwellian fit Thot = 29.5 keV was consistent 
with the experimental values Thot = 30 to 40 keV

TC12742
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SBS in the n = 0.015 to 0.17 nc region can cause 
significant backscattering—plasma flow is important

TC12743

One-dimensional PIC simulations, I = 2 × 1015 W/cm2, high-T*

L. Hao et al., Phys. Plasmas 23, 042702 (2016).
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Significant pump depletion is seen at n = 0.17 nc

TC12744
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Significant SRS is also seen at high intensities

TC12745

 I = 5 × 1015 W/cm2, low T
 100 PPC = 64% total, 50% SBS, 14% SRS
 1000 PPC = 50% total, 30% SBS, 20% SRS

PPC: particles per cell
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Fluid simulations with HLIP see smaller reflectivities

TC12746  *L. Hao et al., Phys. Plasmas 21, 072705 (2014).
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Compared to HLIP, OSIRIS has kinetic and nonlinear 
physics but also higher seed levels for convective  
SRS and SBS

TC12747

• High seed levels can 
lead to high saturation 
levels for convective 
modes

• HLIP lacks nonlinear 
physics such as 
density-modulation–
induced absolute SRS*
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*J. Li, this conference.



Laser transmittance may be limited by LPI

TC12748

Transmitted laser intensity at n = 0.17 nc (from HLIP)
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Open questions

TC12750

• Modeling of LPI coupling in the entire coronal region

– computation challenge (1020 FLOPS in 2-D)

– seed levels for convective modes

• Coupling LPI and hydro simulations

• Integrated design for ICF

FLOPS: floating-point operations per second
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TC12764
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Summary/Conclusions

Laser–plasma instabilities below the quarter-critical 
surface are important in shock ignition

• Particle-in-cell (PIC) and fluid simulations find that stimulated 
Brillouin scattering (SBS) and stimulated Raman scattering (SRS) 
in the low-density region can cause significant pump depletion of 
the ignition pulse in shock ignition

• SBS is reduced by the plasma flow

• New simulations with both realistic seed levels and nonlinear 
physics are needed


