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A Wave-Based Model for Cross-Beam Energy Transfer 
in Inhomogeneous Plasmas

Wave-based models face several challenges
and complications, but these can be overcome

TC12769

• We are computing the motion of a semi-classical object
by solving the (vector) Schrödinger equation

• Several key technical challenges were solved

– time-enveloped (vector) wave equation in 3-D
in strongly inhomogeneous plasma of a useful size

– efficient algorithm is required (i.e., not Crank–Nicholson)

– very complicated boundary conditions (in 3-D)

– coupled to a plasma model 

– parallel efficiency [scalable solver for O(109) 
computational cells]

• The resulting wave solver is practical to run in 3-D

– 100 Intel cores, could scale to 1000’s

– pioneering use/visualization of large datasets/fast disks
at LLE [O(100 GB) sets]

A 3-D wave-based model of CBET* has been 
successfully developed in LPSE

Summary

TC12767

• This model solves the time-enveloped Maxwell equations in 3-D coupled
to a fl uid equation for the low-frequency ion-acoustic response

– radiative boundary conditions, arbitrary incident beams

• A solid understanding of CBET has been obtained on OMEGA

– coordinated program of theory, numerical simulations, and experiments

• CBET mitigation is a crucial part of LLE’s 100-Gbar plan

*cross-beam energy transfer

Laser-beam propagation and energy deposition
is computed in ICF* design codes using ray tracing

TC12768

• Absent nonlinearity, the geometric-optics approximation
is well justifi ed based on the long plasma scale lengths

• Power is deposited based on collisional absorption of laser light

–40 400
–40

40

0

–40 400

x (nm) x (nm)

Laser Laser 

Laser Laser 

y 
(n

m
)

0.0

1.0

0.5

ne/nc

;E;2
(normalized)

0.0

1.0

0.5

*inertial confi nement fusion

Obliquely incident light turns at a lower density
(shifted by cos2i in a linearly varying density profi le)
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The boundary conditions use a “total-fi eld/scattered-
fi eld” formulation together with a perfectly matched 
absorbing layer (PML)

TC12770

• Inject a pump wave on the left-hand side and a (weak) seed wave on the right-hand side

• Match the stimulated Brillouin scattering (SBS) resonance condition for the seed
by changing its frequency and/or adding a fl ow velocity to the plasma
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The LPSE electromagnetic (EM) wave solver 
reproduces analytical results for propagation 
in an inhomogeneous plasma
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This becomes an induced SBS process; 
laser energy changes direction

TC12775

• Laser energy can be 
redirected before it has 
reached its turning point

• This leads to a reduction 
of absorption and 
hydrodynamic efficiency
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The laser light is partially coherent; the intensity 
is not the sum of the intensity of individual beams
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• Collisional absorption is included 
in the ray trace by summing the 
contributions from each ray
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The electric-fi eld grating resonantly excites ion-acoustic 
waves because of the plasma-fl ow Doppler shift

TC12774

• If the two EM waves have 
equal frequencies, the 
ion-acoustic perturbation
will be large if k • v = cs       

• Mach number M = |v|/cs

*ion-acoustic wave

This effect can have a dramatic impact on laser 
absorption and the drive of an ICF target

TC12776

• It appears to operate in the regime of a convective amplifi er for direct-
drive ICF, which may be a tractable problem to describe with rays
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All direct-drive CBET calculations have been performed 
using a 1-D description* that has been adapted
to geometric ray tracing

E17994e

• Unlike x-ray drive,
the presence of supersonic 
plasma fl ow enables
the process to be resonant*

• Three-wave SBS equations 
are computed (pairwise) 
for each beam crossing 
using a generalization 
of Randall et al.* and are 
implemented in-line in 
1-D LILAC

Because the EM seed amplitude 
is large, small gains affect
the absorbed energy.
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*

A nonlinear CBET model is required to obtain 
agreement between 1-D predictions and OMEGA 
experimental data 

E21315k

• The CBET model used to obtain agreement with a > 3.5 
data (not compromised by mix) is ray-based

– scattered-light power and spectrum, shell trajectories,
and mass ablation rates
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A wave-based CBET model is required for several 
important reasons

TC12777

• There are uncertainties associated with ray-based CBET models that are 
hard to quantify without comparison with a more-fundamental model

• The model’s correctness is empirically determined; however, experimental 
tests of CBET are integrated experiments (indirect) 

• Caustic surfaces/turning
points (fi eld swelling,
Airy-like patterns)

• Beam speckle (spatial
and temporal incoherence)

• Polarization effects

• The IAW response is
approximate in ray-based
CBET (steady state,
strong damping)

Spatial incoherence can be modeled with no difficulty; 
temporal incoherence is only slightly harder

TC12778
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At high enough laser intensities, CBET may not act 
as a simple spatial amplifi er

TC12779

• Shock-ignition experiments exceed fi lamentation thresholds
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A 3-D wave-based model of CBET* has been 
successfully developed in LPSE

Summary

TC12767

• This model solves the time-enveloped Maxwell equations in 3-D coupled 
to a fluid equation for the low-frequency ion-acoustic response

– radiative boundary conditions, arbitrary incident beams

• A solid understanding of CBET has been obtained on OMEGA

– coordinated program of theory, numerical simulations, and experiments

• CBET mitigation is a crucial part of LLE’s 100-Gbar plan

*cross-beam energy transfer



Laser-beam propagation and energy deposition 
is computed in ICF* design codes using ray tracing

TC12768

• Absent nonlinearity, the geometric-optics approximation 
is well justified based on the long plasma scale lengths

• Power is deposited based on collisional absorption of laser light
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Wave-based models face several challenges 
and complications, but these can be overcome

TC12769

• We are computing the motion of a semi-classical object 
by solving the (vector) Schrödinger equation

• Several key technical challenges were solved

– time-enveloped (vector) wave equation in 3-D 
in strongly inhomogeneous plasma of a useful size

– efficient algorithm is required (i.e., not Crank–Nicholson)

– very complicated boundary conditions (in 3-D)

– coupled to a plasma model 

– parallel efficiency [scalable solver for O(109) 
computational cells]

• The resulting wave solver is practical to run in 3-D

– 100 Intel cores, could scale to 1000’s

– pioneering use/visualization of large datasets/fast disks 
at LLE [O(100 GB) sets]



The boundary conditions use a “total-field/scattered-
field” formulation together with a perfectly matched 
absorbing layer (PML)

TC12770

• Inject a pump wave on the left-hand side and a (weak) seed wave on the right-hand side

• Match the stimulated Brillouin scattering (SBS) resonance condition for the seed 
by changing its frequency and/or adding a flow velocity to the plasma
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The LPSE electromagnetic (EM) wave solver 
reproduces analytical results for propagation 
in an inhomogeneous plasma

TC12771
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Obliquely incident light turns at a lower density 
(shifted by cos2i in a linearly varying density profile)

TC12772
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The laser light is partially coherent; the intensity 
is not the sum of the intensity of individual beams

TC12773
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• Collisional absorption is included 
in the ray trace by summing the 
contributions from each ray



x (nm)

y 
(n

m
)

x (nm)

y 
(n

m
)

y 
(n

m
)

M = 1.5 M = 1.0 M = 0.5 

V 

V 

V 

kIAWkIAW*

kgratingkgrating

;E;2
(normalized)

0.0

1.0

0.5

dnIAW
(normalized)

0.0

1.0

0.5

The electric-field grating resonantly excites ion-acoustic 
waves because of the plasma-flow Doppler shift

TC12774

• If the two EM waves have 
equal frequencies, the 
ion-acoustic perturbation 
will be large if k • v = cs       

• Mach number M = |v|/cs

*ion-acoustic wave



This becomes an induced SBS process; 
laser energy changes direction

TC12775

• Laser energy can be 
redirected before it has 
reached its turning point

• This leads to a reduction 
of absorption and 
hydrodynamic efficiency
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This effect can have a dramatic impact on laser 
absorption and the drive of an ICF target

TC12776

• It appears to operate in the regime of a convective amplifier for direct-
drive ICF, which may be a tractable problem to describe with rays
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All direct-drive CBET calculations have been performed 
using a 1-D description* that has been adapted 
to geometric ray tracing

E17994e

• Unlike x-ray drive, 
the presence of supersonic 
plasma flow enables 
the process to be resonant*

• Three-wave SBS equations  
are computed (pairwise)  
for each beam crossing  
using a generalization  
of Randall et al.* and are  
implemented in-line in  
1-D LILAC

Because the EM seed amplitude 
is large, small gains affect 
the absorbed energy.
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A nonlinear CBET model is required to obtain 
agreement between 1-D predictions and OMEGA 
experimental data 

E21315k

• The CBET model used to obtain agreement with a > 3.5 
data (not compromised by mix) is ray-based

– scattered-light power and spectrum, shell trajectories, 
and mass ablation rates
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A wave-based CBET model is required for several 
important reasons

TC12777

• There are uncertainties associated with ray-based CBET models that are 
hard to quantify without comparison with a more-fundamental model

• The model’s correctness is empirically determined; however, experimental 
tests of CBET are integrated experiments (indirect) 

• Caustic surfaces/turning 
points (field swelling, 
Airy-like patterns)

• Beam speckle (spatial 
and temporal incoherence)

• Polarization effects

• The IAW response is 
approximate in ray-based 
CBET (steady state, 
strong damping)



Spatial incoherence can be modeled with no difficulty; 
temporal incoherence is only slightly harder
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At high enough laser intensities, CBET may not act 
as a simple spatial amplifier

TC12779

• Shock-ignition experiments exceed filamentation thresholds
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