Density-Modulation–Induced Absolute Laser–Plasma Instabilities: Simulations and Theory

J. Li University of Rochester Laboratory for Laser Energetics

ROCHESTER

46th Annual Anomalous Absorption Conference Old Saybrook, CT 1–6 May 2016

Fluid simulations show that a static ion-density modulation can change the convective unstable modes away from the quarter critical surface to absolute modes

- This conversion can occur for two-plasmon–decay (TPD) and stimulated Raman scattering (SRS) instabilities under realistic direct-drive inertial confinement fusion (ICF)conditions
- A sufficiently large change of the density gradient in a linear density profile can change the convective unstable modes to absolute modes
- An analytical expression is derived for the threshold of the gradient change, which depends only on the convective gain

Collaborators

R. Yan, H. Liang, and C. Ren

University of Rochester Laboratory for Laser Energetics

Motivation

Our previous study* found that the TPD instability in a plasma with ion-density fluctuation plays an important role in hot-electron generation

- TPD modes away from the $n_c/4$ surface appear in the nonlinear stage and form the first stage of electron acceleration
- These modes were linked to ion-density fluctuations

TC10207a

Motivation

The particle-in-cell (PIC) simulation had a higher SRS reflectivity than a fluid code that considers only the convective gains with shock-ignition parameters*

^{*}L. Hao et al., Phys. Plasmas 23, 042702 (2016).

[†]SBS: stimulated Brillouin scattering

^{**}L. Hao et al., Phys. Plasmas 21, 072705 (2014).

^{***}R. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002).

Ion-density modulation can change the convective unstable modes to absolute modes

- A previous study found that 1-D convective SRS modes can become absolute in the presence of ion-density modulation
 - the growth rates of the absolute modes reach a maximum at certain ion-density modulation amplitudes and wavelengths*
 - the absolute thresholds for parabolic and sinusoidal density profiles and the growth rates for the parabolic density profile were derived theoretically with WKB solutions**
- We study the behavior of TPD instability under ion-density fluctuations using *LTS* and WKB-type fluid simulations for direct-drive ICF
- *LTS* solves the linear TPD equations with arbitrary density profiles
 - the TPD growth rates under linear density profiles were benchmarked with theory***

$$\frac{\partial \psi}{\partial t} = \phi - 3\nu_{\rm e}^2 \frac{n_p}{n} - \vec{\nu}_0 \cdot \nabla \psi$$

$$\frac{\partial \boldsymbol{n}_{\boldsymbol{p}}}{\partial \boldsymbol{t}} = -\nabla \boldsymbol{\cdot} (\boldsymbol{n} \nabla \boldsymbol{\psi}) - \vec{\boldsymbol{\nu}}_{\boldsymbol{0}} \boldsymbol{\cdot} \nabla \boldsymbol{n}_{\boldsymbol{p}}$$

- *D. R. Nicholson and A. N. Kaufman, Phys. Rev. Lett. <u>33</u>, 1207 (1974); D. R. Nicholson, Phys. Fluids <u>19</u>, 889 (1976).
- **G. Picard and T. W. Johnston, Phys. Fluids <u>28</u>, 859 (1985);
 - E. A. Williams and T. W. Johnston, Phys. Fluids B 1, 188 (1989).
- ***R. Yan, A. V. Maximov, and C. Ren, Phys. Plasmas 17, 052701 (2010).

 $\nabla^2 \phi = n_p$

We study TPD modes with sinusoidal static ion-density modulation in 2-D *LTS** simulations

• A static density modulation $n_1 = \Delta n \sin(x/L_m)$ is added to a linear density profile n_0 with the amplitude and wavelength relevant to OSIRIS simulation results

$$\Delta n = 0$$
 to $3 \times 10^{-3} n_{c}$

$$L_{\rm m}$$
 = 0.1 to 1.7 μ m

 The amplitudes of the TPD modes inside a narrow region centered at 0.235 n_c are measured to determine the existence of absolute modes

*R. Yan, A. V. Maximov, and C. Ren, Phys. Plasmas 17, 052701 (2010).

TC12784

To isolate the essential physics, we also study the TPD modes in 1-D WKB-type simulations

 $L = 150 \ \mu \text{m}$ $T_e = 3 \ \text{keV}$ $I = 6 \times 10^{14} \ \text{W/cm}^2$ • Our WKB code solves these equations

$$\left(\frac{\partial}{\partial t} + V_1 \frac{\partial}{\partial x}\right) a_1 = \gamma_0 a_2 e^{i\frac{\kappa'}{2}x^2 + i\varphi(x)}$$

$$\left(\frac{\partial}{\partial t} + \mathbf{V_2} \frac{\partial}{\partial \mathbf{x}}\right) \mathbf{a_2} = \gamma_0 \mathbf{a_1} \mathbf{e}^{-i\frac{\kappa'}{2}\mathbf{x}^2 - i\varphi(\mathbf{x})}$$

$$\Delta k = k_{\rm m} \sin \frac{x}{L_{\rm m}}$$
$$\varphi(x) = \int_0^x \Delta k dx = k_{\rm m} L_{\rm m} \left(1 - \cos \frac{x}{L_{\rm m}}\right)$$

 The typical amplitude of phase mismatch is k_mL_m = 0.6 for

 $\Delta n = 6 \times 10^{-4} n_{\rm c}, L_{\rm m} = 0.65 \ \mu {\rm m}$

LTS and WKB simulations reasonably agree

The maximum absolute growth rate is ~70% of the corresponding homogeneous TPD growth rate γ_0

Typical density fluctuation in the PIC simulations:

 $\Delta n = 0$ to 3 × 10⁻³ n_c $L_m = 0.1$ to 1.7 μ m

UR 🔌

• The growth rate is $4 \times$ of that of the absolute modes near the $n_c/4$ region

TC12787

This convective-to-absolute conversion also occurs for SRS instability under shock-ignition conditions

SRS $I = 2 \times 10^{15} \text{ W/cm}^2$, $n_e = 0.22 n_c$, $L = 150 \mu \text{m}$

A two-slope density profile can lead to absolutely unstable solutions in a three-wave coupling system

$$\begin{pmatrix} \frac{\partial}{\partial t} + V_1 & \frac{\partial}{\partial x} \end{pmatrix} a_1 = \gamma_0 a_2 e^{i\varphi(x)} \begin{pmatrix} \frac{\partial}{\partial t} + V_2 & \frac{\partial}{\partial x} \end{pmatrix} a_2 = \gamma_0 a_1 e^{-i\varphi(x)}$$

$$\varphi(x) = \frac{1}{2} \kappa' (1-s) x^2$$

$$\frac{\partial^2}{\partial z_-^2} \mathbf{a} + \left(\frac{1}{2} - i\Lambda - \frac{1}{4}z_-^2\right)\mathbf{a} = \frac{\gamma_0 \mathbf{a}_{20}\delta(\mathbf{x})}{V_1 V_2}, \quad \Lambda = \frac{\gamma_0^2}{\left|\kappa' V_1 V_2\right|}$$

Solution:
$$\begin{cases} \boldsymbol{\phi}_{-}(\mathbf{x},\boldsymbol{p}) = \boldsymbol{D}_{i\Lambda-1}(i\mathbf{z}_{-}), & \mathbf{x} < \mathbf{0} \\ \boldsymbol{\phi}_{+}(\mathbf{x},\mathbf{s},\boldsymbol{p}) = \boldsymbol{D}_{-i\Lambda/(1-s)}(\mathbf{z}_{+}), & \mathbf{x} > \mathbf{0} \end{cases}$$

Connect the solutions at x = 0:

$$\mathbf{a}(\mathbf{x}, \mathbf{p}) \propto \frac{\boldsymbol{\phi}_{-}(\mathbf{x}, \mathbf{p}) \, \boldsymbol{\phi}_{+}(\mathbf{0}, \mathbf{s}, \mathbf{p}) \, \boldsymbol{\theta}(-\mathbf{x}) + \boldsymbol{\phi}_{+}(\mathbf{x}, \mathbf{s}, \mathbf{p}) \boldsymbol{\phi}_{-}(\mathbf{0}, \mathbf{p}) \, \boldsymbol{\theta}(\mathbf{x})}{\boldsymbol{\phi}_{+}(\mathbf{0}, \mathbf{s}, \mathbf{p}) \frac{\partial}{\partial \mathbf{x}} \, \boldsymbol{\phi}_{-}(\mathbf{0}, \mathbf{p}) - \boldsymbol{\phi}_{-}(\mathbf{0}, \mathbf{p}) \frac{\partial}{\partial \mathbf{x}} \, \boldsymbol{\phi}_{+}(\mathbf{0}, \mathbf{s}, \mathbf{p})}$$

Singularity in p complex plane with real (p) > 0 Absolute

An analytical expression is derived for the threshold of the gradient change

• The threshold s_t depends only on the gain parameter Λ

The two-slope model can be used to assess the maximum growth rates of the density-modulation– induced absolute modes for a given density profile

TC12791

The threshold formula of "s" works for sinusoidal density-modulation-induced absolute modes

Summary/Conclusions

Fluid simulations show that a static ion-density modulation can change the convective unstable modes away from the quarter critical surface to absolute modes

- This conversion can occur for two-plasmon–decay (TPD) and stimulated Raman scattering (SRS) instabilities under realistic direct-drive inertial confinement fusion (ICF)conditions
- A sufficiently large change of the density gradient in a linear density profile can change the convective unstable modes to absolute modes
- An analytical expression is derived for the threshold of the gradient change, which depends only on the convective gain

