Heat-Flux Measurements from Collective Thomson-Scattering Spectra

Distance from target (μ m)

R. J. Henchen University of Rochester Laboratory for Laser Energetics

ROCHESTER

46th Annual Anomalous Absorption Conference Old Saybrook, CT 1–6 May 2016

Thomson scattering from ion-acoustic waves (IAW's) and electron plasma waves (EPW's) was used to measure heat flux in coronal plasmas

- Local plasma conditions obtained from Thomson scattering provide an independent measurement of the heat flux using the Spitzer–Härm (SH) thermal-transport model
- The two methods of measuring the heat flux are in good agreement over the locations probed

S. X. Hu, R. K. Follet, J. Katz, V. N. Goncharov, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

W. Rozmus

University of Alberta

These experiments measured the heat flux, electron temperature, and density as functions of space in a coronal plasma.

Collective Thomson scattering can measure the heat flux and local plasma conditions

Thomson scattering from IAW's (calculated) $P_{s} \propto \left(1 + \frac{2\omega}{\omega_{i}}\right) S(k, \omega)$ P_s (normalized) $\Delta \lambda \propto \sqrt{T_{e}} \rightarrow$ 1.0 0.5 $\mathbf{S}(\mathbf{k},\boldsymbol{\omega}) = \frac{2\pi}{\mathbf{k}} \left| 1 - \frac{\chi_{e}}{\varepsilon} \right|^{2} f_{e}\left(\frac{\boldsymbol{\omega}}{\mathbf{k}}\right) + \frac{2\pi \mathbf{Z}}{\mathbf{k}} \left| \frac{\chi_{e}}{\varepsilon} \right|^{2} f_{i}\left(\frac{\boldsymbol{\omega}}{\mathbf{k}}\right)$ 0.0 525.8 526.2 526.6 527.0 Thomson scattering from EPW's (calculated) $\chi_{\rm e} = \int_{-\infty}^{\infty} {\rm d}v \frac{4\pi {\rm e}^2 n_{\rm e}}{m_{\rm e} k^2} \frac{k \cdot \frac{\partial l_{\rm e}}{\partial v}}{\omega - k \cdot v - i\gamma}$ P_s (normalized) $\Delta\lambda \propto \sqrt{n_e}$ 1.0 A(q)0.5 $f_{\rho} = f_{0}^{\mathrm{M}} + f_{1}^{\mathrm{SH}}$ 0.0 615 625 460 440 635

Wavelength (nm)

Changes in the electron distribution function caused by heat flux affect the Thomson scattering from EPW's

Thomson scattering was used to measure the heat flux, electron temperature, and electron density in coronal plasmas

• Thomson scattering (TS) provides local measurements of T_e , n_e , and q in an $\approx 50 \times 50 \times 50$ - μ m³ volume

- Probing five different locations provides values for ∇*T*_e
- An independent measure of *q* is obtained from *T*_e, *n*_e, and *∇T*_e

Thomson scattering provides two separate measurements of heat flux by probing plasma waves along the direction of the temperature gradient.

The up- and downshifted EPW features were measured with a large signal-to-background ratio

Thomson-scattering spectra obtained at five locations in the corona were used to measure the heat flux

The scattering spectra are fit to determine the electron temperature and density

The electron temperature and density measurements are used to infer the heat flux

The relative amplitudes of the EPW scattering features were used to measure heat flux

Two experimental configurations measured heat flux parallel and perpendicular to the target normal

LLE

Differences in the relative amplitudes of the EPW scattering features between the two configurations show the effect of heat flux

The heat-flux values obtained by matching electron feature amplitudes are in good agreement with the temperature-gradient measurements

UR

Summary/Conclusions

Thomson scattering from ion-acoustic waves (IAW's) and electron plasma waves (EPW's) was used to measure heat flux in coronal plasmas

- Local plasma conditions obtained from Thomson scattering provide an independent measurement of the heat flux using the Spitzer–Härm (SH) thermal-transport model
- The two methods of measuring the heat flux are in good agreement over the locations probed

