Polarization Dependence of Cross-Beam Energy Transfer in Unabsorbed Light Beamlets

D. H. Edgell University of Rochester Laboratory for Laser Energetics

LLE

46th Annual Anomalous Absorption Conference Old Saybrook, CT 1–6 May 2016

Summary

Beamlet images show a strong effect of polarization on cross-beam energy transfer (CBET) in direct-drive implosions

- Beamlet images are a diagnostic for detailed measurements of CBET in direct-drive implosions
- For polarized smoothed beams, the beamlet intensities are symmetric about the diagnostic symmetry axis
- For linearly polarized beams, an asymmetry in the intensities appears during the main drive part of the laser pulse when CBET is predicted to be strong

R. K. Follett, J. Katz, J. F. Myatt, W. Seka, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

- Light reaches a scattered-light detector originating from each beam
- Recorded light originates from a determinable point in a beam profile
 - impact parameter
 - polar angle

UR

- Light reaches a scattered-light detector originating from each beam
- Recorded light originates from a determinable point in a beam profile
 - impact parameter
 - polar angle
- This light can be considered as sampled from a small component of the incident beam
 - a "beamlet"

- Light reaches a scattered-light detector originating from each beam
- Recorded light originates from a determinable point in a beam profile
 - impact parameter
 - polar angle
- This light can be considered as sampled from a small component of the incident beam
 - a "beamlet"
- Unabsorbed light from this beam appears as a spot in the image plane

UR 🔌

Simulated images

Simulated images

Simulated images

LL

Simulated images

LL

The beamlet spots can be used to diagnose the variation in CBET over a beam profile

(Arbitrary units) 2 600 *r_{n_c/4*} 400 1 +S ଫ୍ତ ക 200 Turning point *y (µ*m) \mathfrak{G} s = 0 r_{Mach} 1 0 Ô9 0 0 8 8 -2008 3 min Target Impact -1 d plasma parameter -400 808 -600 -2 Some of the recorded beamlets -600 -300 300 600 0 experience net loss because of CBET $\mathbf{x} (\boldsymbol{\mu} \mathbf{m})$ while others gain.

LL

The beamlet spots are modeled using a 3-D CBET postprocessor for hydrodynamics codes*

*D. H. Edgell *et al.*, "Cross-Beam Energy Transfer in Polar-Drive Implosions on OMEGA," to be submitted to Physics of Plasmas.

Beams with polarization smoothing produce fairly symmetric beamlet spot images

 Distributed polarization rotators (DPR's) split each beam into two orthogonal polarizations

Polarization effects on CBET are believed to cause asymmetric images with linearly polarized beams

- Not a polarization effect from the diagnostic
- The coupling between beams in CBET is strongly affected by the relative polarization of the crossing beams*

UR

^{*}P. Michel et al., Phys. Plasmas 20, 056308 (2013).

Asymmetric spot images are predicted when polarized beams are modeled in the CBET calculations

E25047

CBET modeling is being validated in comparisons with LPSE full electromagnetic-field code predictions*

The change in beamlet polarization caused by CBET may be needed in CBET modeling

- When a polarized beamlet undergoes CBET with a beamlet of a different polarization, the polarization of both beamlets will be altered*,**
 - only the shared component of polarization gains/loses energy

Changes in polarization caused by CBET on OMEGA should be measured to determine if it is a significant effect when summed over many beam crossings. UR

^{*}D. Turnbull *et al.*, Rev. Sci. Instrum. <u>85</u>, 11E603 (2014). **P. Michel *et al.*, Phys. Rev. Lett. 113, 205001 (2014).

An upgraded diagnostic will improve our understanding of CBET beamlets and polarization effects

- Camera gate width will be reduced from ~3 ns to ~100 ps
 - eliminates time-integrating effects
- Telocentric optics will improve the beam symmetry from twofold to fivefold
 - better statistics when comparing beamlet intensities
- A Wollaston prism will split the image into orthogonal polarizations
 - can measure the beamlet polarization
 - will determine if the beamlet polarizations change significantly because of CBET under OMEGA conditions

Summary/Conclusions

Beamlet images show a strong effect of polarization on cross-beam energy transfer (CBET) in direct-drive implosions

- Beamlet images are a diagnostic for detailed measurements of CBET in direct-drive implosions
- For polarized smoothed beams, the beamlet intensities are symmetric about the diagnostic symmetry axis
- For linearly polarized beams, an asymmetry in the intensities appears during the main drive part of the laser pulse when CBET is predicted to be strong

