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X-ray self-emission images are used to diaghose The emissivity of the plasma is determined Three x-ray framing cameras were used in experiments Absolute-timing calibrations within 20 ps for the three framing
the evolution of the electron temperature and density by Abel-inverting the measured self-emission profile to simultaneously measure the self-emission profiles cameras were obtained by measuring the rise of the laser
in the coronal plasma to determine the growth D at three wavelengths pulse and the ablation-front trajectory with all three cameras*

of the conduction zone Integrated self-emission at camera - t’:‘E EEE
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Spherical symmetry of the implosions and negligible absorption I(v,s+As,y)=1(v,s,y)+B(v,s,y)K'As 0.0 f | 420 _“'A, s |*XRFC1**
in the corona allow for the self-emission profiles to be Abel-inverted Diagnostic-plane radius /' (xzm)
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Discretized radiation-transfer equation:

I(v,s+As,y)=1(v,s,y)e ¥4+ (1-e¥25)B(v,s,y)
The self-emission in these conditions can be described by
a blackbody spectrum, which allows for the separation of the density

and temperature contributions to the emissivity For k', As < 1 (negligible absorption):
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From the temperature and emissivity, the density in the conduction

zone is determined for each measurement time front
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The Abel inversion is possible because the Time (ps) Time (ns)
Initial comparisons with LILAC simulations show good agreement absorption is negligible in the corona a few : —— : — —
DANTE UFEXRSC More precise relative timing was obtained by cross-calibrating the absolute timing

between measurements and simulations microns outside of the ablation front for the ' ' Photon energy (eV) between the cameras using the trajectory of an imploding shell as a reference

x-ray frequencies measured. 0'9;13 428 438 ' 448
DANTE and the ultrafast x-ray streak camera (UFXRSC) were used SFC: Sydor framing camera

Target radius r (um . N
E25077 E25080 J (44m) to cross-calibrate the emission between the three cameras. E23820 *D.T. Michel et al., High Power Laser Science and Engineering 3, e19 (2015).
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In directly driven inertial confinement fusion implosions, The x-ray filtration was varied to isolate the effect Images are taken at different times early in the laser pulse Absolute calibrations for the three framing cameras
the laser imprint is smoothed through electron thermal of the temperature on the emission to determine the development of the conduction zone were obtained by simultaneously measuring the emission

conduction once the conduction-zone length is larger CLE on the ultrafast x-ray streak camera
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Radius (1m) Radius (xm) Radius (1m) Similar absolute-calibration measurements were obtained
using the DANTE diagnostic.

Characterizing the growth of the conduction zone is critical to determine Measuring the ratio of the emissivity for different frequencies makes it possible
the size of the nonuniformities imprinted on the target surface by the laser. to determine the temperature by fitting it with a blackbody spectrum.

Profiles are angularly averaged around the target to improve the signal-to-noise ratio.
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The length of the conduction zone is determined With the measured emissivity and temperature, Early comparisons show good agreement between Future work will apply the described method
by measuring the temperature and density the opacity is calculated and the density measured and simulated self-emission profiles to reconstruct the density profile in several images

of the coronal plasma is determined using opacity tables =B and determine the growth of the conduction zone
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*Local thermodynamic equilibrium (LTE) approximation A more in-depth analysis is in progress.
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X-ray self-emission images are used to diaghose

the evolution of the electron temperature and density
in the coronal plasma to determine the growth

of the conduction zone
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The self-emission in these conditions can be described by
a blackbody spectrum, which allows for the separation of the density
and temperature contributions to the emissivity

Spherical symmetry of the implosions and negligible absorption
in the corona allow for the self-emission profiles to be Abel-inverted
to find the emissivity

Emissivity profiles are simultaneously measured with three different
filters to determine the emission spectrum and temperature profile

From the temperature and emissivity, the density in the conduction
zone is determined for each measurement time

Initial comparisons with LILAC simulations show good agreement
between measurements and simulations



In directly driven inertial confinement fusion implosions,
the laser imprint is smoothed through electron thermal
conduction once the conduction-zone length is larger
than the size of the nonuniformities (d; > A)
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Characterizing the growth of the conduction zone is critical to determine
the size of the nonuniformities imprinted on the target surface by the laser.
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The length of the conduction zone is determined
by measuring the temperature and density

of the coronal plasma
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€ = specific emissivity
I = specific intensity
B (v, T,) = blackbody source term*
K’ (v, n;, To) = specific opacity**

Imaging system

X-ray framing-camera (XRFC)
diagnostic plane

The temperature [T, (r)] and density [n; (r)] are determined
from x-ray self-emission images [€(V, r)].

*Local thermodynamic equilibrium (LTE) approximation
E25079 **Tabulated



The emissivity of the plasma is determined
by Abel-inverting the measured self-emission profile

UR

Discretized radiation-transfer equation:

I(v,s+As,y)=1(v,s,y)e*4s + (1—e*¥25) B(v,s,y)

For k', As < 1 (negligible absorption):

I(v,s+As,y)=1(v,s,y)+B(V,s,y)K'As

Intensity at diagnostic plane:

I(v,DP,y) =~ foo €|(s —sg)? +y?|ds
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The Abel inversion is possible because the

absorption is negligible in the corona a few
microns outside of the ablation front for the
x-ray frequencies measured.
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The x-ray filtration was varied to isolate the effect
of the temperature on the emission
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Measuring the ratio of the emissivity for different frequencies makes it possible
to determine the temperature by fitting it with a blackbody spectrum.
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Ti-filtered emissivity

With the measured emissivity and temperature,
the opacity is calculated and the density
Is determined using opacity tables
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Three x-ray framing cameras were used in experiments
to simultaneously measure the self-emission profiles
at three wavelengths
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DANTE and the ultrafast x-ray streak camera (UFXRSC) were used
to cross-calibrate the emission between the three cameras.
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Images are taken at different times early in the laser pulse

to determine the development of the conduction zone
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Profiles are angularly averaged around the target to improve the signal-to-noise ratio.
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Early comparisons show good agreement between
measured and simulated self-emission profiles
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Absolute-timing calibrations within 20 ps for the three framing
cameras were obtained by measuring the rise of the laser
pulse and the ablation-front trajectory with all three cameras*
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More precise relative timing was obtained by cross-calibrating the absolute timing
between the cameras using the trajectory of an imploding shell as a reference.

SFC: Sydor framing camera
*D.T. Michel et al., High Power Laser Science and Engineering 3, e19 (2015).
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Absolute calibrations for the three framing cameras
were obtained by simultaneously measuring the emission

on the ultrafast x-ray streak camera
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Similar absolute-calibration measurements were obtained
using the DANTE diagnostic.
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Future work will apply the described method
to reconstruct the density profile in several images

and determine the growth of the conduction zone
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* The framing-camera images will be absolutely calibrated
to quantitatively reconstruct the temperature and density
profiles from the experiments

* The growth of the conduction zone will be determined
for various laser intensities

* The growth of the conduction zone will be compared
for a square pulse and a square pulse with a picket

Results will be compared with simulations using several models
for thermal transport and equation of state to benchmark
the early-time evolution of the plasma.
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