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A time-resolved Thomson-scattering diagnostic is being Raman amplification at the Laboratory for Laser Particle-in-cell simulations predict 40% pump depletion Thomson scattering will spatially and temporally resolve

built to measure the amplitude and frequency of nonlinear Energetics will utilize existing laser systems and a nonlinear EPW the driven EPW'’s frequency and amplitude
electron plasma waves in a Raman plasma amplifier to provide the pump and seed CLE CLE
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detected with a time-resolved Thomson-scattering diagnostic
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The next generation of high-intensity lasers To create a long homogenous plasma target, Large-amplitude EPW’s are required for efficient Raman The Thomson-scattering diagnostic utilizes a novel
requires a paradigm shift in technology a gas cell target has been constructed amplification; however, there is limited experimental streaked optical spectrometer that achieves 1-ps time

and characterized using interferometry knowledge of nonlinear EPW dynamics resolution by correcting the pulse-front tilt
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A plasma amplifier works by transferring energy During diagnostics activation, four backscatter spectra A Thomson-scattering diagnostic will be used to study The pulse-front tilt is corrected with an echelon
from a long (tens of ps) energetic pump pulse into were measured at focus (80-um spot), which showed the plasma temperature, nonlinear plasma waves, and optic that archives the streak camera’s maximum

a short (tens of fs) counter-propagating seed pulse broad-bandwidth Raman backscatter the driven wave in a Raman plasma amplifier 1-ps time resolution
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A time-resolved Thomson-scattering diagnostic is being
built to measure the amplitude and frequency of nonlinear

electron plasma waves in a Raman plasma amplifier
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e Raman amplification has the potential to surpass current
laser power limitations

* An experimental system is currently being constructed
and characterized to conduct a pre-eminent Raman
amplification experiment

o Efficient Raman amplification coincides with the presence
of large-amplitude electron plasma waves (EPW’s) that will be
detected with a time-resolved Thomson-scattering diagnostic
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The next generation of high-intensity lasers
requires a paradigm shift in technology
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A plasma amplifier works by transferring energy
from a long (tens of ps) energetic pump pulse into

a short (tens of fs) counter-propagating seed pulse
UR
LLE

Raman Instability

Epump Eseed) Epump x ONe

L s D

@ pump = Wgeed + Dp

E24635a



Raman amplification at the Laboratory for Laser
Energetics will utilize existing laser systems
to provide the pump and seed
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To create a long homogenous plasma target,
a gas cell target has been constructed
and characterized using interferometry

UR
Gas cell Atomic density LLE
7 1 1 1 1 1 1 1
g
5 68 F ; T % E £ 1
'2'? 5 | |
§5 ar- -
0
'EB 3 —
Sk 21 ]
<1 [~ a) -
0 | | |
-2.0 -10 0.0 1.0 2.0
X (mm)
Plasma density
| | | | |
> 1.6 i -
E 2‘? 12 = < ¢
E % E [l ’ —
o S2 0.8 | o o-5psi|_|
s == m 0 psi
(8] .
n oX 04 - A5 psi
W . x10 psi |
0.0 | | | | |
0 10 20 30 40 50 60
ms

E24636a Space (mm)

*rms: root mean square



During diagnostics activation, four backscatter spectra
were measured at focus (80-um spot), which showed
broad-bandwidth Raman backscatter
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Particle-in-cell simulations predict 40% pump depletion

and a nonlinear EPW
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Large-amplitude EPW’s are required for efficient Raman
amplification; however, there is limited experimental
knowledge of nonlinear EPW dynamics
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A Thomson-scattering diagnostic will be used to study
the plasma temperature, nonlinear plasma waves, and

the driven wave in a Raman plasma amplifier
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Thomson scattering will spatially and temporally resolve
the driven EPW'’s frequency and amplitude
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The Thomson-scattering diagnostic utilizes a novel
streaked optical spectrometer that achieves 1-ps time
resolution by correcting the pulse-front tilt

UR
LLE
Fibc_ar Streak
_ optic = camera
Collection Spectrometer At
optic 90° < - .
PN R S
Streak-
camera slit —O Time-varying
voltage

Gas cell

E25705



The pulse-front tilt is corrected with an echelon
optic that archives the streak camera’s maximum
1-ps time resolution
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