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Particle-in-cell simulations predict 40% pump depletion 
and a nonlinear EPW
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A plasma amplifi er works by transferring energy
from a long (tens of ps) energetic pump pulse into
a short (tens of fs) counter-propagating seed pulse
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During diagnostics activation, four backscatter spectra 
were measured at focus (80-nm spot), which showed 
broad-bandwidth Raman backscatter
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Large-amplitude EPW’s are required for efficient Raman 
amplifi cation; however, there is limited experimental 
knowledge of nonlinear EPW dynamics 

E25074 P. Sprangle et al., Phys. Rev. Lett. 41, 4463 (1990).

• Large-amplitude waves exhibit 
nonlinear behavior as dne 
approaches ne

• Nonlinearity causes impulsive 
plasma densities, triangular 
electric fi elds, and enhanced 
wave amplitudes

• Nonlinear Landau damping 
causes amplitude oscillations 
and frequency shifts 

• Highly nonlinear plasma 
waves break

• All of these nonlinear effects 
alter the Raman amplifi cation 
scattering efficiency

Linear $ dne/ne % 1

dn/n0

Ez

Highly nonlinear $ dne/ne $ 1

dn/n0

Ez

A time-resolved Thomson-scattering diagnostic is being 
built to measure the amplitude and frequency of nonlinear 
electron plasma waves in a Raman plasma amplifi er

Summary

E25072

• Raman amplifi cation has the potential to surpass current
laser power limitations

• An experimental system is currently being constructed
and characterized to conduct a pre-eminent Raman 
amplifi cation experiment

• Efficient Raman amplifi cation coincides with the presence
of large-amplitude electron plasma waves (EPW’s) that will be 
detected with a time-resolved Thomson-scattering diagnostic

Raman amplifi cation at the Laboratory for Laser 
Energetics will utilize existing laser systems
to provide the pump and seed
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The next generation of high-intensity lasers 
requires a paradigm shift in technology

Motivation

E24634a RPA: Raman plasma amplifi er

• Present-day petawatt-class
lasers are limited by the 
grating-damage threshold  

– broadband gratings: 
fl uence limit ~0.1 J/cm2

• Plasma amplifi ers have the 
potential to reach higher 
peak powers by avoiding the 
damage-threshold obstacle

– plasma fl uence limit:
~1000 J/cm2

(assuming a 10-fs pulse) 1960
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To create a long homogenous plasma target,
a gas cell target has been constructed
and characterized using interferometry
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A Thomson-scattering diagnostic will be used to study 
the plasma temperature, nonlinear plasma waves, and 
the driven wave in a Raman plasma amplifi er
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Thomson scattering will spatially and temporally resolve 
the driven EPW’s frequency and amplitude
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The Thomson-scattering diagnostic utilizes a novel 
streaked optical spectrometer that achieves 1-ps time 
resolution by correcting the pulse-front tilt
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The pulse-front tilt is corrected with an echelon
optic that archives the streak camera’s maximum
1-ps time resolution
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A time-resolved Thomson-scattering diagnostic is being 
built to measure the amplitude and frequency of nonlinear 
electron plasma waves in a Raman plasma amplifier

Summary

E25072

• Raman amplification has the potential to surpass current 
laser power limitations

• An experimental system is currently being constructed 
and characterized to conduct a pre-eminent Raman 
amplification experiment

• Efficient Raman amplification coincides with the presence 
of large-amplitude electron plasma waves (EPW’s) that will be 
detected with a time-resolved Thomson-scattering diagnostic



The next generation of high-intensity lasers 
requires a paradigm shift in technology

Motivation

E24634a RPA: Raman plasma amplifier

• Present-day petawatt-class 
lasers are limited by the 
grating-damage threshold  

– broadband gratings: 
fluence limit ~0.1 J/cm2

• Plasma amplifiers have the 
potential to reach higher 
peak powers by avoiding the 
damage-threshold obstacle

– plasma fluence limit: 
~1000 J/cm2 
(assuming a 10-fs pulse) 1960
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A plasma amplifier works by transferring energy 
from a long (tens of ps) energetic pump pulse into 
a short (tens of fs) counter-propagating seed pulse
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Raman amplification at the Laboratory for Laser 
Energetics will utilize existing laser systems 
to provide the pump and seed
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To create a long homogenous plasma target, 
a gas cell target has been constructed 
and characterized using interferometry
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During diagnostics activation, four backscatter spectra 
were measured at focus (80-nm spot), which showed 
broad-bandwidth Raman backscatter
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Particle-in-cell simulations predict 40% pump depletion 
and a nonlinear EPW
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Large-amplitude EPW’s are required for efficient Raman 
amplification; however, there is limited experimental 
knowledge of nonlinear EPW dynamics 

E25074 P. Sprangle et al., Phys. Rev. Lett. 41, 4463 (1990).

• Large-amplitude waves exhibit 
nonlinear behavior as dne 
approaches ne

• Nonlinearity causes impulsive 
plasma densities, triangular 
electric fields, and enhanced 
wave amplitudes

• Nonlinear Landau damping 
causes amplitude oscillations 
and frequency shifts 

• Highly nonlinear plasma 
waves break

• All of these nonlinear effects 
alter the Raman amplification 
scattering efficiency

Linear $ dne/ne % 1

dn/n0

Ez

Highly nonlinear $ dne/ne $ 1

dn/n0

Ez



A Thomson-scattering diagnostic will be used to study 
the plasma temperature, nonlinear plasma waves, and 
the driven wave in a Raman plasma amplifier
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Thomson scattering will spatially and temporally resolve 
the driven EPW’s frequency and amplitude
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The Thomson-scattering diagnostic utilizes a novel 
streaked optical spectrometer that achieves 1-ps time 
resolution by correcting the pulse-front tilt
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The pulse-front tilt is corrected with an echelon 
optic that archives the streak camera’s maximum 
1-ps time resolution
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