Hot-Electron Temperature Measurements with Laser Irradiation of 10^{14} to 10^{15} W/cm²

A. A. Solodov **University of Rochester** Laboratory for Laser Energetics

45th Annual Anomalous Absorption Conference Ventura, CA 14-19 June 2015

Preheat in inertial confinement fusion (ICF) implosions depends on hotelectron temperature and laser-to-hot-electron conversion efficiency UR 🔌 LLE

- The bremsstrahlung radiation was measured by a nine-channel filter spectrometer
- Two types of experiments used the K_{α} radiation from high-Z signature layers embedded in plastic
 - the ratio of K_{α} emitted toward the front and the back of a thick, high-Z target
 - K_{α} lines emitted from the back of the target composed of five consecutive high-Z layers
- The hot-electron temperature rose from ~15 keV to ~50 keV in the intensity range of 1 to 7 \times 10¹⁴ W/cm²
- Approximately 1% laser energy to hot-electron conversion efficiency was inferred

Collaborators

B. Yaakobi, J. F. Myatt, C. Stoeckl, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

In typical cryogenic direct-drive experiments* only ~25% of the hot electrons will be intercepted by the compressed fuel because of a wide angular divergence**

- Hot electrons are generated near the end of the laser pulse*** when the density scale length is maximal
- At that time, the compressed fuel shell has converged to about half the original target size*
- <0.15% coupling of the laser energy to fuel in the form of hot electrons is required to maintain good compression****

*V. N. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010). **B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013). ***C. Stoeckl et al., Phys. Rev. Lett. 90, 235002 (2003). *****J. A. Delettrez et al., Bull. Am. Phys. Soc. 59, 150 (2014).

TC10662a

Source of two-plasmondecay (TPD) hot electrons

Long-scale-length planar CH plasmas are produced on OMEGA EP to study the generation of hot electrons by TPD

- Laser pulse
 - temporal profile: square, τ = 2 ns
 - beam spot size: $D \approx 1 \text{ mm}$
 - energy: up to 8 kJ in four beams
 - incident intensity: I = 1 to 7×10^{14} W/cm²
- Parameters at N_{αc}
 - intensity: $I_{qc} = 0.5$ to 4.5×10^{14} W/cm²
 - density scale length: $L_n \leq 400 \ \mu m$
 - plasma temperature: $T_e \le 2.5$ keV
 - common wave gain:** G $\propto I_{qc} \times L_n/T_e \le 7$

TC9311a

*B. Yaakobi et al., Phys. Plasmas 19, 012704 (2012); S. X. Hu et al., Phys. Plasmas 20, 032704 (2013). **D. T. Michel et al., Phys. Plasmas 20, 055703 (2013).

Experiments were performed using plastic targets with embedded high-Z signature layers

• Targets

- -5-, 35-, 50-, 100-, 127- μ m-thick Ag foils coated with 30 μ m CH
- 30- and 100- μ m-thick Mo foils coated with 30 μ m CH
- five consecutive-Z layers (Nb, Mo, Rh, Pd, Ag, 5- μ m each) coated with 25 μ m CH

- **Diagnostics**
 - nine-channel filter spectrometer with image plate [hard x-ray image plate (HXIP)]
 - Cauchois-type quartz spectrometer [transmission crystal spectrometer (TCS)]
 - two identical LiF crystal spectrometers [x-ray spectrometer (XRS)]

TC11646a

*TIM: ten-inch manipulator

The hot-electron temperature was inferred using K_{α} measurements from the front and back of thick Ag (Mo) targets

• The ratio of K_{α} emitted toward the front and the back decreases with increasing T: \ddot{K}_{α} is emitted deeper into the foil and therefore absorbed less on the way to the back of the target

*I. Kawrakow et al., NRC, Ottawa, Canada, NRCC Report PIRS-701 (May 2011).

TC11647a

The temperature was inferred from K_{α} measurements using a five consecutive-Z layer target

TC11648a

A nine-channel filter x-ray spectrometer with image plate (HXIP) has been developed

TC11649a

HXIP measurements (channels 2 to 9) indicate a single-temperature **hot-electron distribution**

TC11650a

10

Temperatures inferred from HXIP and K_{α} measurements agree in experiments using different targets

The hot-electron temperature rises from ~15 keV to ~50 keV in the intensity range of 1 to 7 \times 10¹⁴ W/cm².

TC11652a

Hot-electron temperature and x-ray yield measurements have been used to estimate the preheat energy

- Approximately 1% of the laser energy is converted to hot electrons, confirmed using different diagnostics
- Only ~1/4 of the hot electrons will be intercepted by the compressed fuel because of a wide angular divergence*

ROCHESTER

TC11653a

*B. Yaakobi et al., Phys. Plasmas <u>20</u>, 092706 (2013).

Summary/Conclusions

Preheat in inertial confinement fusion (ICF) implosions depends on hotelectron temperature and laser-to-hot-electron conversion efficiency UR 🔌 LLE

- The bremsstrahlung radiation was measured by a nine-channel filter spectrometer
- Two types of experiments used the K_{α} radiation from high-Z signature layers embedded in plastic
 - the ratio of K_{α} emitted toward the front and the back of a thick, high-Z target
 - K_{α} lines emitted from the back of the target composed of five consecutive high-Z layers
- The hot-electron temperature rose from ~15 keV to ~50 keV in the intensity range of 1 to 7 \times 10¹⁴ W/cm²
- Approximately 1% laser energy to hot-electron conversion efficiency was inferred

TC11345a

XRS confirms an increased signal in HXIP channel 1 resulting from T ~ 2-keV x rays generated in the plasma corona

