Absolute Two-Plasmon Decay and Stimulated Raman Scattering in Direct-Drive Irradiation Geometries

R. W. Short, A. V. Maximov, J. F. Myatt, W. Seka, and J. Zhang **University of Rochester** Laboratory for Laser Energetics

45th Annual Anomalous Absorption Conference Ventura, CA 14-19 June 2015

Summary

In general, both stimulated Raman scattering (SRS) and two-plasmon decay (TPD) will play a role in direct-drive laser–plasma interactions

- Absolute TPD and SRS thresholds have different dependencies on laser and plasma parameters, but are comparable
- The modes with lowest thresholds tend to be either SRS or TPD; mixed polarization modes seem unimportant
- Larger scale lengths and temperatures favor SRS; larger incidence angles favor TPD
- The analysis presented here is linear; however there is evidence that the absolute SRS/TPD it describes persists well into the nonlinear regime

TC12170

The origin in k space corresponds to the plasma-wave turning point, allowing SRS and TPD to be absolute there

- In general, instabilities can only be convective in inhomogeneous plasmas*
- Near the turning point, however, there is a finite threshold for absolute instability**
- Enhanced multibeam convective gain near the origin in k space suggests the potential for absolute instability there
- Convective SRS occurs for $n/n_c \leq 1/4$; for absolute SRS, the electromagnetic (EM) decay wave must have $k \simeq 0$ and originate at $n/n_c \simeq 1/4$

Absolute SRS requires the component of k perpendicular to the density gradient to vanish

- The y components of the plasma-wave group velocity $v_q = 3v_T^2 k/\omega$ are equal and opposite, so TPD is absolute in the y direction
- For SRS, $v_{q1y} = 3v_T^2 k_{1y} / \omega$ and $v_{q2y} = c^2 k_{2y} / \omega$, so SRS will be convective in y unless $k_{2y} \cong 0$

For a single beam, the absolute TPD threshold* is lower than the Rosenbluth convective threshold

- The Simon threshold (adjusted for s-polarized oblique incidence) is $\eta \equiv \frac{I_{14}L_{\mu}}{233 T_{koV} \cos\theta} > 1$
- The Rosenbluth convective gain is $G_R = \frac{2\pi\gamma_0^2}{\kappa' V_1 V_2} = \frac{I_{14}L_{\mu}}{53.6T_{\rm wave}\cos\theta} \approx 4.35 \eta$
- The nominal convective threshold is $G_R > 2\pi$ or $\eta > \frac{2\pi}{4.35} \simeq 1.44$
- Therefore, the TPD absolute instability threshold lies below the convective instability threshold; this, in general, remains true for multiple beams
- The threshold for absolute SRS is comparable**

*A. Simon et al., Phys. Fluids 26, 3107 (1983). **C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).

TC10637b

Fourier analysis of the time-independent TPD equations results in a set of first-order linear differential equations

- Absolute TPD and SRS occur near quarter-critical, so the local density profile may be approximated by a linear gradient
- Fourier transforming in space, the wave equations become first-order linear equations for the longitudinal and transverse components of the small-k decay wave
- The larger-k decay wave may be taken to be longitudinal
- For N beams there are therefore 3N + 1 linear differential equations that are integrated from $k_x \rightarrow -\infty$ to $k_x \rightarrow +\infty$ to obtain the spatial gain
- Divergence of the gain indicates an onset of absolute instability; optimizing over ω gives the threshold and frequency

Fourier analysis of the time-independent TPD equations results in a set of first-order linear differential equations

• For a single beam, take the decay triangle in the x-y plane and normalize $\vec{k} \rightarrow c\vec{k}/\omega_0$, $\Delta \rightarrow \omega/\omega_0 - 1/2$, $L \rightarrow \omega_0 L/c$

$$\begin{aligned} \frac{\partial u_{L}}{\partial k_{x}} &= iL \left(\frac{k_{d}}{k} - \frac{k}{k_{d}} \right) (k \cdot v_{0}) e^{-4iL \left\{ 2 \Delta k_{x} - 3 \frac{v_{1}^{2}}{c^{2}} \left(\frac{1}{3} k_{x}^{3} + k_{y}^{2} k_{x} \right) + 3 \frac{v_{1}^{2}}{c^{2}} \left[\frac{1}{3} \left(k_{x} - k_{0x} \right)^{3} + \left(k_{y} - k_{0y} \right)^{2} k_{x} \right] \right\}} u_{d} \\ \frac{\partial u_{T}}{\partial k_{x}} &= iL \frac{k_{d}}{k} \left[\left(k_{x} \hat{y} - k_{y} \hat{x} \right) \cdot v_{0} \right] e^{-4iL \left\{ 2 \Delta k_{x} - \left[\frac{1}{3} k_{x}^{3} + \left(\frac{ck_{y}}{\omega_{0}} \right)^{2} k_{y}^{2} k_{x} \right] + 3 \frac{v_{1}^{2}}{c^{2}} \left[\frac{1}{3} \left(k_{x} - k_{0x} \right)^{3} + \left(k_{y} - k_{0y} \right)^{2} k_{x} \right]} \\ \frac{\partial u_{z}}{\partial k_{x}} &= iL k_{d} v_{0z} e^{-4iL \left\{ 2 \Delta k_{x} - \left(\frac{1}{3} k_{x}^{3} + k_{y}^{2} k_{x} \right) + 3 \frac{v_{1}^{2}}{c^{2}} \left[\frac{1}{3} \left(k_{x} - k_{0x} \right)^{3} + \left(k_{y} - k_{0y} \right)^{2} k_{x} \right]} \right\}}{u_{d}} \\ \frac{\partial u_{d}}{\partial k_{x}} &= iL \left(\frac{k_{d}}{k} - \frac{k}{k_{d}} \right) \left(\frac{ck}{\omega_{0}} \cdot \frac{v_{0}}{c} \right) \left(k \cdot v_{0} \right) e^{4iL \left\{ 2 \Delta k_{x} - 3 \frac{v_{1}^{2}}{c^{2}} \left(\frac{1}{3} k_{x}^{3} + k_{y}^{2} k_{x} \right) + 3 \frac{v_{1}^{2}}{c^{2}} \left[\frac{1}{3} \left(k_{x} - k_{0x} \right)^{3} + \left(k_{y} - k_{0x} \right)^{3} + \left(k_{y} - k_{0y} \right)^{3} + \left(k_{y}$$

TC12201

$$\left. \begin{array}{l} \left. \left. u_{L} \right. \right. \\ \left. \left. u_{L} \right. \right. \right] \right\} \\ \left. \left. u_{L} \right. \right\} \\ \left. \left. u_{L} \right. \right\} \\ \left. \left. \left. u_{L} \right. \right\} \\ \left. u_{L} \right. \\ \left. u_{L$$

[^]]] **U**_T

For smaller k_{\perp} , TPD decay waves become more transverse

- The optimal SRS mode has $k \simeq 0$ and is almost entirely electromagnetic
- The optimal TPD mode is almost entirely electrostatic (ES); for smaller k_{\perp} , the EM component and the threshold increase

tic r *k* ₁

-Large *k* wave -Small *k* wave, ES component -Small *k* wave, EM component

The absolute threshold for TPD depends on angle of incidence and polarization

TC10640I ROCHESTER

9

For two *p*-polarized beams, an on-axis TPD mode $(k_y = 0)$ has the lowest threshold at larger incidence angles

At larger angles, the on-axis mode is closer to the hyperbolas than the off-axis modes

 $\theta = 40^{\circ}$

Light from absolute SRS will be emitted along the density gradient

- The much-higher group velocity of the EM wave means the instability must be absolute in the direction perpendicular to the density gradient, i.e., $k_v \sim k_z \sim 0$ and the wave is purely transverse
- Phase matching, and therefore threshold, will be insensitive to temperature
- The spectrum of the emitted light will have the same dependence on temperature as for TPD
- For s-polarization the threshold will be independent of pump incidence angle; for *p*-polarization the coupling is reduced for oblique incidence and the threshold increases with angle
- Analysis of the *k*-space equations for a normally incident beam gives

a threshold of $I_{14} > \frac{1995}{L_{II}^{4/3}}$, close to the Liu, Rosenbluth, and White result

For oblique incidence, TPD and SRS behave differently as a function of incidence angle

Increasing temperatures and scale lengths favor SRS; increasing incidence angles favor TPD

TPD s-polarized TPD p-polarized SRS s-polarized SRS p-polarized

The spectral signature of the absolute instability near $n_c/4$ is a sharp red-shifted feature that can be used for T_e measurements

• Although the absolute instability is obtained from linear analysis, it can remain the most-intense TPD mode in the nonlinear regime, persisting throughout the pulse

E22225a

Summary/Conclusions

In general, both stimulated Raman scattering (SRS) and two-plasmon decay (TPD) will play a role in direct-drive laser–plasma interactions

- Absolute TPD and SRS thresholds have different dependencies on laser and plasma parameters, but are comparable
- The modes with lowest thresholds tend to be either SRS or TPD; mixed polarization modes seem unimportant
- Larger scale lengths and temperatures favor SRS; larger incidence angles favor TPD
- The analysis presented here is linear; however there is evidence that the absolute SRS/TPD it describes persists well into the nonlinear regime

TC12170

