The Current LILAC Model for Cross-Beam Energy Transfer has been Extended to DRACO and Nonsymmetrical Illumination

W. Seka University of Rochester Laboratory for Laser Energetics

45th Annual Anomalous Absorption Conference Ventura Beach, CA 14–19 June 2015

Summarv

The current cross-beam energy transfer (CBET) model has been extended from 1-D LILAC to 2-D DRACO and from **OMEGA to National Ignition Facility (NIF) implosions**

- Simulated scattered-light spectra, powers, and energies for spherical implosions using LILAC and DRACO and current CBET models agree with each other and experiments
- Two-dimensional DRACO modeling of OMEGA polar-direct-drive (PDD) implosions compares favorably with experiments
- For PDD implosions on the NIF, the temporal behavior of the scattered-light spectra and powers agree well with experiments
- Residual discrepancies between simulations and experiments point toward reduced drive in the experiments relative to simulations

E24241

Collaborators

S. P. Regan, P. B. Radha, J. A. Marozas, M. J. Rosenberg, M. Hohenberger, V. N. Goncharov, J. F. Myatt, D. H. Edgell, D. T. Michel, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

J. E. Ralph, J. D. Moody, and D. P. Turnbull

Lawrence Livermore National Laboratory

For OMEGA cryogenic implosions, the scattered-light spectra and powers are matched well by LILAC

E24242

DRACO (1-D) and **LILAC** simulate spectra equally well if CBET is included

E24243

Experimental absorption: 66%

DRACO (1-D) and **LILAC** simulate spectra equally well if CBET is included

ROCHESTER

E24244

Experimental absorption: 66% **LILAC: 62%**

Experimental scattered-light spectra of OMEGA PDD implosions are similar around the target except for blow-by

E24245

FABS: full-aperture backscatter station

Scattered-light spectra of OMEGA PDD implosions are simulated well with 2-D DRACO

RÖCHESTER

E24246

*E*_{tot} = 16.7 kJ *DRACO*: 64099 CBET × 2 NL

Scattered-light powers of OMEGA PDD implosions are close to simulations if corrected for blow-by around the target

ROCHESTER

DRACO: 64099 CBET × 2 NL

Different CBET models lead to obvious changes in the scattered powers for PDD implosions

Scattered-light powers for OMEGA PDD implosion 64099 1 FABS25 Laser Normalized power Experiment (3.3 J) **DRACO CBET** \times 2 (3.0 J) DRACO CBET (1.9 J) **DRACO 1B (1 J)** 64099 0 0 2 Time (ns)

NIF PDD implosions are also well modeled with DRACO

E24255

N130128-001 CBET × 2 NL

DRACO models temporal behavior of scattered-light powers well for NIF PDD implosions but the predicted energies are far from NIF "fast-diode" energies

E24256

N130128-001 CBET × 2 NL

Summary/Conclusions

The current cross-beam energy transfer (CBET) model has been extended from 1-D LILAC to 2-D DRACO and from **OMEGA to National Ignition Facility (NIF) implosions**

- Simulated scattered-light spectra, powers, and energies for spherical implosions using LILAC and DRACO and current CBET models agree with each other and experiments
- Two-dimensional DRACO modeling of OMEGA polar-direct-drive (PDD) implosions compares favorably with experiments
- For PDD implosions on the NIF, the temporal behavior of the scattered-light spectra and powers agree well with experiments
- Residual discrepancies between simulations and experiments point toward reduced drive in the experiments relative to simulations

E24241

