Planar Two-Plasmon–Decay Experiments at Polar-Direct-Drive Ignition-Relevant Scale Lengths at the National Ignition Facility

M. J. Rosenberg **University of Rochester** Laboratory for Laser Energetics

45th Annual Anomalous Absorption Conference Ventura Beach, CA 14-19 June 2015

LLNL-PRES-672401

Summarv

A platform has been developed at the National Ignition Facility (NIF) to study two-plasmon-decay (TPD) hot-electron production at polar-direct-drive (PDD) ignition-relevant conditions

- Planar-geometry experiments were performed on the NIF with predicted scale lengths of ~0.5 mm and $T_e > 3 \text{ keV}$
- Experimental evidence of TPD ($\omega/2$ emission and $T_{hot} \sim 40$ keV) was observed
- The beam angle of incidence did not have a strong effect on the TPD

2

Collaborators

A. A. Solodov, W. Seka, R. Epstein, J. F. Myatt, S. P. Regan, M. Hohenberger, and T. J. B. Collins

> University of Rochester Laboratory for Laser Energetics

J. E. Ralph, D. P. Turnbull, J. D. Moody, and M. A. Barrios

Lawrence Livermore National Laboratory

Motivation

PDD* is an alternative approach to achieving ignition on the NIF

NIF beams configured for indirect drive (arranged around the poles)

M. Hohenberger et al., Phys. Plasmas <u>22</u>, 056308 (2015).

Motivation

PDD ignition designs predict long density scale lengths and high electron temperatures under which TPD may occur

2-D simulated plasma conditions for igniting PDD design

Currently, these coronal plasma conditions can only be created in NIF planar experiments.

E24131

Planar target TPD experiments on the NIF were designed using DRACO

ROCHESTER

E24122

Two planar experiments were performed on the NIF to study the beam angle-of-incidence dependence of TPD

Each experiment uses a laser drive with the longest allowable flat top while avoiding laser damage.

E24123

8

7

Principal measurements include the spectroscopy of a microdot layer, Mo K_{α} fluorescence, hard x-ray bremsstrahlung, and $\omega/2$ emission

The electron temperature (T_e) is inferred from the isoelectronic ratio^{*} of the Mn/Co K-shell emission lines

Shot N150520: 23° and 30° beams

DRACO predicts that the microdot is at the $n_c/4$ surface at t = 2.0 to 2.5 ns.

E24125

*R. S. Marjoribanks et al. Phys. Rev. A <u>46</u>, 1747(R) (1992).

The measured Co/Mn He_{α} line ratio indicates $T_e = 3.8 \pm 0.6$ keV at $n_c/4$

Future experiments will explore the effect of the microdot on plasma conditions.

E24126

$\omega/2$ emission indicates TPD is driven during the flat top of the laser pulse

Optical spectrometer at 23°

The $\omega/2$ signal is weak because the viewing angle is far from optimal.

E24127

N150520 laser pulse

$\omega/2$ emission indicates TPD is driven during the flat top of the laser pulse

Optical spectrometer at 23°

The $\omega/2$ signal is weak because the viewing angle is far from optimal.

E24127a

N150520 laser pulse

TPD-generated hot electrons were observed via hard x-rays and K_{α} fluorescence

The beam angle of incidence did not have a strong effect on TPD hot-electron production for the first ~5.5 ns.

The hard x-ray and $\omega/2$ signals have similar temporal histories

Time-integrated hard x-ray spectra indicate $T_{\rm hot} = 40\pm5$ keV for both experiments

KOCHESTER

E24130

15

Summary/Conclusions

A platform has been developed at the National Ignition Facility (NIF) to study two-plasmon-decay (TPD) hot-electron production at polar-direct-drive (PDD) ignition-relevant conditions

- Planar-geometry experiments were performed on the NIF with predicted scale lengths of ~0.5 mm and $T_e > 3 \text{ keV}$
- Experimental evidence of TPD ($\omega/2$ emission and $T_{hot} \sim 40$ keV) was observed
- The beam angle of incidence did not have a strong effect on the TPD

These experiments will be used to assess laser-plasma simulation environment (LPSE) simulations* and test the theory that larger angles of incidence have a lower TPD threshold (more hot electrons).**

^{*} J. F. Myatt et al., presented at the 44th Annual Anomalous Absorption Conference, Estes Park, CO, 8–13 June 2014.

^{**} R. W. Short, J. F. Myatt, and J. Zhang, presented at the 44th Annual Anomalous Absorption Conference, Estes Park, CO, 8–13 June 2014.

Appendix

Future work will explore the use of higher-Z ablators to mitigate TPD in the $\eta > 1$ regime

