A Numerical Model for Hot-Electron Generation in Direct-Drive Implosions

J. F. Myatt University of Rochester Laboratory for Laser Energetics

45th Annual Anomalous Absorption Conference Ventura, CA 14–19 June 2015

The new hot-electron package in LPSE* enables hot-electron production caused by two-plasmon decay (TPD) to be computed in spherical implosions

- The recent "alternate ablator" campaign on OMEGA has been simulated with the laser-plasma instability (LPI) code LPSE
- The temporal behavior and strength of the hot-electron signatures are predicted to differ between the three ablator materials (CH, Be, and CHSi-Si-Be)
 - LPSE predicts the lowest hot-electron fraction in the Be-Si-CHSi target
 - Be and CH are predicted to be similar
- The goal of this campaign was to demonstrate hot-electron reduction in multilayer targets

TC12159

*Laser-plasma simulation environment (LPSE)

Collaborators

J. Shaw, V. N. Goncharov, J. Zhang, A. V. Maximov, R. W. Short, W. Seka, D. H. Edgell, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

D. F. DuBois and D. A. Russell

Lodestar Research Corporation

H. X. Vu

University of California, San Diego

LPSE is designed to perform large-scale simulations of laser-plasma interactions, where the three-dimensional geometry is essential

- LPSE computes TPD in the n_c/4 region of the corona
 - it is designed to compute the effect of multibeam instability*
- Laser irradiation can be very complex [standard OMEGA, OMEGA EP, and National Ignition Facility (NIF) beam geometries are built in]
- It uses an established model of TPD-driven electrostatic plasma turbulence**
 - hot electron production is computed using a novel hybrid-particle algorithm that integrates 10⁷ to 10⁸ particles taking advantage of hardware (GPU) acceleration
 - it is similar to the quasilinear model***

TC12160

^{*}J. F. Myatt et al., Phys. Plasmas 21, 055501 (2014).

^{**}D. F. DuBois, D. A. Russell, and H. A. Rose, Phys. Rev. Lett. 74, 3983 (1995);

D. A. Russell and D. F. DuBois, Phys. Rev. Lett. <u>86</u>, 428 (2001);

^{***}J. F. Myatt et al., Phys. Plasmas 20, 052705 (2013).

LPSE quantifies hot-electron production (energetics and spectral properties) relevant to inertial confinement fusion (ICF) experiments at the Omega Laser Facility and on the NIF

Amplitude

- Other diagnostic signatures of TPD in OMEGA experiments can be computed
 - Thomson scattering
 - hard x rays
 - half-harmonic emission
- Predictions have been made for FY15 NIF experiments by A. A. Solodov**

KOCHESTER

TC12161

*R. K. Follett et al., Phys. Rev. E 91, 031104 (2015). ** T. M. Rosenberg et al., this conference.

Three spherical implosions experiments were simulated with LILAC to obtain the hydrodynamic variables as a function of time (CBET,* but no TPD)

- The coronal temperature is predicted to increase in the Be-Si-CHSi target
- the TPD threshold increases according to the simple IL/T scaling

TC12162

*Cross-beam energy transfer

The Si layer reduces the density scale length at the $n_{C}/4$ surface

Based on LILAC predicted scale lengths, temperatures, and intensities, the Be-Si-CHSi target is expected to excite the least TPD

- The "strength" of TPD should depend on the quantity $\frac{IL_n}{T}$
- Linear threshold parameter for a single beam $\eta = \frac{I_{14} L_{n,\mu m}}{230 T_{e,keV}}$
- IL/T_e varies little during the main pulse because temperature increases compensate for the scale length

*A. Simon et al., Phys. Fluids 26, 3107 (1983).

Each target is simulated by LPSE to quantify the hot-electron production

- The simulations take advantage of the separation between hydro and LPI time scales
- The duration of the implosion is broken up into several runs chosen to sample the main pulse (markers)
- The hydrodynamic variables are "frozen" over the duration of the LPSE simulation

TC12165

The 3-D simulation volume is determined by the density scale length at the chosen time

TC11243b

For each simulated time, six different locations near the $n_c/4$ surface were computed [using a distributed polarization rotator (DPR) model]

× Angular location of simulations ○ Hex ports ○ Beam ports

For all cases (tangentially focused SG5) TPD hot electrons are preferentially generated at the hex centers*

This is broadly consistent with Seka's observations*

*W. Seka et al., Phys. Rev. Lett. <u>112</u>, 145001 (2014).

The absolute time-dependent hot-electron power has been computed for each ablator type

Hot-electron power is strongly reduced in the CHSi-Si-Be design when Si is present at the $n_c/4$ surface.

TC12168

The Langmuir wave (LW) intensity shows differences between Be and CH that are not seen in hot electrons

- The reasons are caused \bullet by differences in the acoustic damping rate
- This effect might be observable with Thomson scattering**

*J. F. Myatt et al., Phys. Plasmas 20, 052705 (2013).

The new hot-electron package in LPSE* enables hot-electron production caused by two-plasmon decay (TPD) to be computed in spherical implosions

- The recent "alternate ablator" campaign on OMEGA has been simulated with the laser-plasma instability (LPI) code LPSE
- The temporal behavior and strength of the hot-electron signatures are predicted to differ between the three ablator materials (CH, Be, and CHSi-Si-Be)
 - LPSE predicts the lowest hot-electron fraction in the Be-Si-CHSi target
 - Be and CH are predicted to be similar
- The goal of this campaign was to demonstrate hot-electron reduction in multilayer targets

TC12159

*Laser-plasma simulation environment (LPSE)