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Summary

The new hot-electron package in LPSE* enables hot-electron production 
caused by two-plasmon decay (TPD) to be computed in spherical implosions

•	 The recent “alternate ablator” campaign on OMEGA has been simulated 
with the laser–plasma instability (LPI) code LPSE

•	 The temporal behavior and strength of the hot-electron signatures are predicted 
to differ between the three ablator materials (CH, Be, and CHSi-Si-Be)

–	LPSE predicts the lowest hot-electron fraction in the Be-Si-CHSi target
–	Be and CH are predicted to be similar

•	 The goal of this campaign was to demonstrate hot-electron reduction 
in multilayer targets

*Laser-plasma simulation environment (LPSE)
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LPSE is designed to perform large-scale simulations of laser–plasma 
interactions, where the three-dimensional geometry is essential

•	 LPSE computes TPD in the nc/4 region of the corona
–	it is designed to compute the effect of multibeam instability* 

•	 Laser irradiation can be very complex [standard OMEGA, OMEGA EP,  
and National Ignition Facility (NIF) beam geometries are built in]

•	 It uses an established model of TPD-driven electrostatic plasma turbulence**

–	hot electron production is computed using a novel hybrid-particle 
algorithm that integrates 107 to 108 particles taking advantage 
of hardware (GPU) acceleration

–	it is similar to the quasilinear model***

*J. F. Myatt et al., Phys. Plasmas 21, 055501 (2014).
**	D. F. DuBois, D. A. Russell, and H. A. Rose, Phys. Rev. Lett. 74, 3983 (1995); 

D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001); 	
***J. F. Myatt et al., Phys. Plasmas 20, 052705 (2013).
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LPSE quantifies hot-electron production (energetics and spectral 
properties) relevant to inertial confinement fusion (ICF) experiments 
at the Omega Laser Facility and on the NIF

**R. K. Follett et al., Phys. Rev. E 91, 031104 (2015).
** T. M. Rosenberg et al., this conference.

•	 Other diagnostic signatures 
of TPD in OMEGA experiments 
can be computed 

–	Thomson scattering
–	hard x rays
–	half-harmonic emission

•	 Predictions have been made 
for FY15 NIF experiments 
by A. A. Solodov**
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[comparison with LPSE (blue lines)]*
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Three spherical implosions experiments were simulated with LILAC to obtain 
the hydrodynamic variables as a function of time (CBET,* but no TPD)

•	 The coronal temperature is predicted to increase in the Be-Si-CHSi target
•	 the TPD threshold increases according to the simple I TL  scaling
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*Cross-beam energy transfer
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The Si layer reduces the density scale length at the n 4c  surface
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Based on LILAC predicted scale lengths, temperatures, and intensities, 
the Be-Si-CHSi target is expected to excite the least TPD

•	 The “strength” of TPD should 

depend on the quantity 
I
T
L
e

n

•	 Linear threshold parameter 

for a single beam 
I

T
L

230 ,

,n

e keV

m14
h =

n *

•	 LI Te varies little during the main 
pulse because temperature increases 
compensate for the scale length
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Each target is simulated by LPSE to quantify the hot-electron production

•	 The simulations take advantage 
of the separation between 
hydro and LPI time scales

•	 The duration of the implosion 
is broken up into several runs 
chosen to sample the main 
pulse (markers)

•	 The hydrodynamic variables 
are “frozen” over the duration 
of the LPSE simulation
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The 3-D simulation volume is determined by the density 
scale length at the chosen time

•	 This is a local analysis 
in the neighborhood 
of a point r  = (r, i, z) 
on the quarter-critical surface

•	 Each run is made to 20 ps
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For each simulated time, six different locations near the nc /4 surface 
were computed [using a distributed polarization rotator (DPR) model]
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×
•	 The location determines 

the laser beam geometry
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For all cases (tangentially focused SG5) TPD hot electrons are preferentially 
generated at the hex centers*
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*W. Seka et al., Phys. Rev. Lett. 112, 145001 (2014).

•	 This is broadly consistent with Seka’s observations*
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The absolute time-dependent hot-electron power 
has been computed for each ablator type
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•	 CH and Be targets produce 
similar hot-electron fluxes

Hot-electron power is strongly reduced in the CHSi-Si-Be 
design when Si is present at the n 4c  surface.
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The Langmuir wave (LW) intensity shows differences 
between Be and CH that are not seen in hot electrons

**J. F. Myatt et al., Phys. Plasmas 20, 052705 (2013).
**R. K. Follett et al., this conference.

•	 The reasons are caused 
by differences in the 
acoustic damping rate

•	 This effect might 
be observable with 
Thomson scattering**
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Summary/Conclusions
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TC12159 *Laser-plasma simulation environment (LPSE)

The new hot-electron package in LPSE* enables hot-electron production 
caused by two-plasmon decay (TPD) to be computed in spherical implosions

•	 The recent “alternate ablator” campaign on OMEGA has been simulated 
with the laser–plasma instability (LPI) code LPSE

•	 The temporal behavior and strength of the hot-electron signatures are predicted 
to differ between the three ablator materials (CH, Be, and CHSi-Si-Be)

–	LPSE predicts the lowest hot-electron fraction in the Be-Si-CHSi target
–	Be and CH are predicted to be similar

•	 The goal of this campaign was to demonstrate hot-electron reduction 
in multilayer targets


