Effects of Beam Incoherence and Colors on Cross-Beam Energy Transfer

A. V. Maximov, J. F. Myatt, R. W. Short, I. V. Igumenshchev, and W. Seka **University of Rochester** Laboratory for Laser Energetics

45th Annual Anomalous Absorption Conference Ventura Beach, CA 14-19 June 2015

Summary

In direct-drive inertial confinement fusion (ICF) plasmas, the use of colors in incoherent laser beams can mitigate the cross-beam energy transfer (CBET)

- In dense plasmas (including beam-turning points) CBET is strongly influenced by common ion-wave gratings
- The use of frequency detuning (colors) in laser beams
 - reduces the role of common ion waves
 - increases the frequency broadening of scattered light
- Both of these effects can limit CBET

- CBET model in dense plasmas (including the turning points of laser beams)
- CBET driven by multiple incoherent laser beams generating common ion gratings
- Influence of beam frequency detuning (colors) on CBET
- CBET between beams with a large intensity contrast

s) gratings

Nonlinear propagation of laser beams with frequency detuning is modeled in dense plasmas

- Beams with wavelength detuning are used to limit beam-to-beam coupling
 - two-dimensional non-paraxial model near turning points
 - related to parameters from simulations of OMEGA experiments (flow velocity $\ll C_s$)

The laser–plasma interaction model includes backward and forward stimulated Brillouin scattering (SBS), beam self-focusing, field swelling, and absorption

Beam-to-beam coupling can be described by backward SBS gains

$$\frac{\mathrm{d}G_{\mathrm{SBS}}}{\mathrm{d}\ell} = \frac{\omega_0^2}{2\mathrm{c}^2 n_{\mathrm{c}}} \operatorname{Re} \left\{ \frac{n_{\mathrm{e}} k_{\mathrm{s}}^2 \mathrm{c}_{\mathrm{s}}^2 \times I_0}{2\nu_{\mathrm{i}}\omega_{\mathrm{s}} + i \left[\left(\omega_{\mathrm{s}} + k_{\mathrm{s}} v_0\right)^2 - k_{\mathrm{s}}^2 \mathrm{c}_{\mathrm{s}}^2 \right]} \times \frac{1}{2k_{0\mathrm{x}}} \right\},\$$
$$I_0 = |E|^2 / 4\pi n_{\mathrm{c}} T_{\mathrm{e}}$$

ROCHESTER

The angular width of scattered light is increased

Crossing laser beams can backscatter off common ion waves

TC12178

IAW: ion-acoustic wave

Crossing multiple laser beams in dense plasmas generates multiple common ion waves

Irradiation by multiple beams leads to broad spectra of density perturbations

CBET is significantly reduced when frequency detuning (colors) is applied to crossing laser beams

The frequency spectra of scattered light from multiple crossing beams are strongly modified by the beam frequency detuning

1.4
1.2
1.0
8.0
0.6
0.4
0.2

The influence of frequency detuning (colors) on CBET in crossing laser beams includes the reduction of common ion waves

Wavelength detuning in incoherent laser beams significantly reduces the intensity of backscattered light

CBET driven by incoherent laser beams with a large intensity contrast can increase the backscatter of weaker beams

Summary/Conclusions

In direct-drive inertial confinement fusion (ICF) plasmas, the use of colors in incoherent laser beams can mitigate the cross-beam energy transfer (CBET)

- In dense plasmas (including beam-turning points) CBET is strongly influenced by common ion-wave gratings
- The use of frequency detuning (colors) in laser beams
 - reduces the role of common ion waves
 - increases the frequency broadening of scattered light
- Both of these effects can limit CBET

