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Summary

An accurate equation-of-state (EOS) table of plastic (CH) has been built 
from first-principles calculations for inertial confinement fusion (ICF) 
and high-energy-density-physics (HEDP) applications

• Combining the Kohn–Sham quantum molecular dynamics (QMD) and the orbital-free 
molecular dynamics (OFMD) methods, we have calculated the EOS of plastic CH under 
a wide range of plasma conditions (t = 0.1 to 100 g/cm3 and T = 1,000 to 4,000,000 K)  

• Significant differences have been identified in the low-temperature regime, when the first-
principles equation-of-state (FPEOS) table of CH is compared with SESAME-EOS 

• Hydrodynamic simulations of an ICF implosion using the FPEOS of CH showed an ~30% 
neutron reduction because of an ~5% slowdown of implosion velocity relative 
to the SESAME simulations

The mass ablation rate predicted by FPEOS is lower than the SESAME prediction.
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Accurate knowledge of material properties (EOS, opacity, and thermal 
conductivity) is required for ICF and HEDP simulations

• In the warm dense regime, strong coupling and electron degeneracy play an essential 
role in determining the material properties in high-energy-density (HED) states

• First-principles methods are needed to take these important effects into account 
to self-consistently understand material properties under extreme conditions

• First-principles studies on the EOS, opacity, and thermal conductivity of warm dense 
deuterium–tritium (DT)* have shown a significant impact on ICF simulations

• Self-consistent calculations of the material properties of ICF ablators (e.g., CH** or C***) 
are important for designing and understanding ICF and HEDP experiments

*S. X. Hu et al., Phys. Rev. Lett. 104, 235003 (2010); Phys. Rev. B 84, 224109 (2011); 
Phys. Rev. E 89, 043105 (2014); Phys. Rev. E 90, 033111 (2014); Phys. Plasmas 22, 056304 (2015).

**S. Hamel et al., Phys. Rev. B 86, 094113 (2012).
***L. X. Benedict et al., Phys. Rev. B 89, 224109 (2014).
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First-principles methods of QMD and OFMD can be combined 
for material-property calculations under extreme conditions

• QMD method is based on the Kohn–Sham density functional theory (DFT),* 
while OFMD uses Thomas–Fermi molecular dynamics**

• The QMD method can handle plasma conditions up to the Fermi temperature, 
while the OFMD can be used for high-temperature conditions

• A full range of density and temperature conditions can be investigated 
with the combined QMD–OFMD method

*W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
**F. Lambert, J. Clérouin, and G. Zérah, Phys. Rev. E 73, 016403 (2006).
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The mass ablation rate predicted by the SESAME-EOS of CH is higher 
than experimental observations* 

Would the FPEOS of CH give a better mass ablation rate toward experimental data?
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*D. T. Michel et al., Phys. Rev. Lett. 114, 155002 (2015).
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The FPEOS of CH* has been calculated for densities and temperatures 
ranging from t = 0.1 to t = 100 g/cm3 and T = 1,000 to 4,000,000 K

*S. X. Hu et al., “First-Principles Equation-of-State of Polystyrene and Its Effect on ICF Implosions,” 
to be submitted to Physical Review Letters.
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The calculated principal Hugoniot* of CH from FPEOS 
has been well compared with experiments

The Hugoniot temperature predicted by FPEOS is in better agreement with experiment!

*S. X. Hu, T. R. Boehly, and L. A. Collins, Phys. Rev. E 89, 063104 (2014).
**S. P. Marsh, ed. LASL Shock Hugoniot Data, Los Alamos Series on Dynamic Material Properties (University of California Press, Berkeley, CA, 1980).

***M. A. Barrios et al., Phys. Plasmas 17, 056307 (2010).
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Off the principal Hugoniot, a comparison of CH-FPEOS with SESAME 
shows a large difference in the low-T and low-t regimes
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When the plasma temperature increases, the difference between 
FPEOS and SESAME becomes smaller (~10% range) 
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Low-temperature (<10-eV) plasma conditions are routinely accessed 
in low-adiabat ICF implosions 
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Hydro simulations with FPEOS predict a lower mass ablation rate and better 
agreement of scattered lights with experiment
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The FPEOS simulation has predicted an ~5% decrease in implosion velocity 
and an ~30% reduction in neutron yield

Yield = 1.5 × 1014; GTiHn = 3.6 keV; tR = 261 mg/cm2; P = 142 GBar (SESAME)
Yield = 1.1 × 1014; GTiHn = 3.4 keV; tR = 250 mg/cm2; P = 118 GBar (FPEOS)
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Summary/Conclusions
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An accurate equation-of-state (EOS) table of plastic (CH) has been built 
from first-principles calculations for inertial confinement fusion (ICF) 
and high-energy-density-physics (HEDP) applications

• Combining the Kohn–Sham quantum molecular dynamics (QMD) and the orbital-free 
molecular dynamics (OFMD) methods, we have calculated the EOS of plastic CH under 
a wide range of plasma conditions (t = 0.1 to 100 g/cm3 and T = 1,000 to 4,000,000 K)  

• Significant differences have been identified in the low-temperature regime, when the first-
principles equation-of-state (FPEOS) table of CH is compared with SESAME-EOS 

• Hydrodynamic simulations of an ICF implosion using the FPEOS of CH showed an ~30% 
neutron reduction because of an ~5% slowdown of implosion velocity relative 
to the SESAME simulations

The mass ablation rate predicted by FPEOS is lower than the SESAME prediction.


