The Release Behavior of Diamond Shocked to 15 Mbar

M. C. Gregor **University of Rochester** Laboratory for Laser Energetics

45th Annual Anomalous Absorption Conference Ventura, CA 14-19 June 2015

The shock and release behaviors of the NIF diamond ablator material were measured

- The National Ignition Facility (NIF) uses ultra-nanocrystalline high-density carbon (HDC) ablators
- Knowledge of the diamond Hugoniot and release behavior is critical for inertial confinement fusion (ICF) ignition target designs
- Release data are obtained by impedance matching with known standards
- Models for both the single-crystal (SC) diamond and HDC release are constrained by the experimental data
- The SC diamond release into liquid deuterium is accurately modeled using **SESAME 7830**
- The release data for both SC diamond and HDC will aid in the development of more-precise models for ICF target designs

Collaborators

T. R. Boehly, C. A. McCoy, D. N. Polsin, and D. D. Meyerhofer University of Rochester Laboratory for Laser Energetics

D. E. Fratanduono, P. M. Celliers, and G. W. Collins

Lawrence Livermore National Laboratory

Release data are obtained using the impedance-matching technique between known standards

Release data are obtained using the impedance-matching technique between known standards

Motivation

Initial NIF shock-timing experiments revealed inaccuracies in the ablator release model

The glow-discharge polymer (GDP) equation-of-state model was corrected using release data into liquid D₂.**

*H. F. Robey *et al.*, Phys. Plasmas <u>19</u>, 042706 (2012). **S. Hamel *et al.*, Phys. Rev. B <u>86</u>, 094113 (2012).

The impedance-match method was used to measure the SC diamond release into liquid D₂

The release isentrope constructed using SESAME 7830 agrees with the experimental data.

*M. D. Knudson, Sandia National Laboratories, private communication (2015).

The single-crystal diamond release model is constrained using multiple standards

Particle velocity (km/s)

*M. D. Knudson and M. P. Desjarlais, Phys. Rev. B <u>88</u>, 184107 (2013). **M. A. Barrios et al., Phys. Plasmas 17, 056307 (2010). ***M. D. Knudson and R. W. Lemke, J. Appl. Phys. <u>114</u>, 053510 (2013). [†]M. D. Knudson, Sandia National Laboratories, private communication (2015).

E24117a

Experiments with HDC provide both Hugoniot and release measurements

Instantaneous shock velocities in HDC are determined using an unsteady wave correction*

*D. E. Fratanduono et al., J. Appl. Phys. 116, 033517 (2014).

E23267b

The HDC Hugoniot was measured up to 20 Mbar

The HDC release model is constrained using four materials including deuterium

^{**}M. A. Barrios et al., Phys. Plasmas 17, 056307 (2010).

ev. B <u>88</u>, 184107 (2013). 7 (2010). rs. <u>114</u>, 053510 (2013). rs, private communication (2015).

^{***}M. D. Knudson and R. W. Lemke, J. Appl. Phys. <u>114</u>, 053510 (2013).

[†]M. D. Knudson, Sandia National Laboratories, private communication (2015).

The shock and release behaviors of the NIF diamond ablator material were measured

- The National Ignition Facility (NIF) uses ultra-nanocrystalline high-density carbon (HDC) ablators
- Knowledge of the diamond Hugoniot and release behavior is critical for inertial confinement fusion (ICF) ignition target designs
- Release data are obtained by impedance matching with known standards
- Models for both the single-crystal (SC) diamond and HDC release are constrained by the experimental data
- The SC diamond release into liquid deuterium is accurately modeled using **SESAME 7830**
- The release data for both SC diamond and HDC will aid in the development of more-precise models for ICF target designs

Shock velocities for impedance matching are measured using a time-resolved VISAR

The single-crystal diamond release model is constrained using multiple standards

E24117 ROCHESTER

VISAR-1 shot 75397

Time (ns)