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E24207

Summary

Achieving hydrodynamic equivalence on OMEGA will require mitigating 
cross-beam energy transfer (CBET) and may require a multilayer target 
to reduce hot-electron preheat

• CBET reduces the ablation pressure by about 50% in hydro-equivalent designs

• Experiments have demonstrated CBET mitigation with reduced focal-spot size

• Three dimensional simulations suggest that reducing the laser spot size after 
the third picket (zooming) can recover the hot-spot pressure lost to CBET

• Multilayer targets reduce hot electrons and improve hydrodynamic efficiency
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CBET reduces the energy coupled to the fusion capsule by transferring energy 
from the incident light to the outgoing light

CBET reduces the most hydrodynamically efficient portion of the incident laser beams.

Target

CBET is spatially 
limited near M ~ 1

Energy is transferred
between beams by 
ion-acoustic waves 

k1

kak2

I. V. Igumenschev et al., Phys. Plasmas, 16, 082701 (2009).
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Experiments have demonstrated that CBET can be mitigated by reducing 
the energy that propagates past the target*

Reducing the diameter of the beams by 30% recovers most of the velocity lost to CBET, 
but the target performance was significantly compromised by nonuniformities.

 *D. H. Froula et al., Phys. Rev. Lett. 108, 125003 (2012).
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To reduce the laser spot without introducing nonuniformities, 
the diameter of the laser beams must be reduced after a sufficient 
conduction zone has been developed

*I. V. Igumenshchev et al. Phys. Rev. Lett. 110, 145001 (2013).
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Three-dimensional simulations suggest that zooming after the third picket can recover the hot-spot pressure lost to CBET.
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Coaxial zooming is being implemented on OMEGA using a multipulse driver 
and a radially varying phase plate*

*D. H. Froula et al., Phys. Plasmas 20, 082704 (2013).

• There are three concerns with zooming 
that are being investigated

– single-beam stimulated Brillouin 
scattering (SBS)

– increased power spectrum
– increased hot-electron fraction
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To investigate single-beam SBS, a small spot was used to scale the intensity
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The experiments suggest the Rb/Rt must remain above 0.6 to keep single-beam SBS below 5%.
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To investigate the increased power spectrum, planar Rayleigh–Taylor 
experiments were performed with a sub-aperture beam

*DPP = distributed phase plate
**R. Epstein, J. Appl. Phys. 82, 2123 (1997).
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The Rayleigh–Taylor growth was measured to be larger 
with the sub-aperture beam
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Adding a thin high-Z layer is measured to reduce the Rayleigh–Taylor growth 
over the modes of concern*

*S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996).
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Two-plasmon–decay experiments suggest that mitigating CBET will increase 
the hot-electron fraction by a factor of 5
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Current cryo experiments show no evidence of hot-electron preheat, but simulations suggest a factor 
of two increase will degrade the areal density.
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Multilayer targets were designed to increase hydrodynamic efficiency, reduce 
laser–plasma instabilities, and lower the Rayleigh–Taylor growth

The layer thicknesses are optimized to have increased laser absorption at nc/4 
(Si higher Te) and increased ablation in Be (higher A/Z).

 * V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
**S. X. Hu et al., Phys. Rev. Lett. 111, 123003 (2013); G. Fiksel et al., Phys. Plasmas 19, 062704 (2012).
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The increased electron temperature in the multilayer targets reduces
the hot-electron fraction by a factor of 8

*D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).
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The hot-electron fraction is reduced by a factor of 8 in multilayer compared to CH targets.
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Summary/Conclusions

Achieving hydrodynamic equivalence on OMEGA will require mitigating 
cross-beam energy transfer (CBET) and may require a multilayer target 
to reduce hot-electron preheat

• CBET reduces the ablation pressure by about 50% in hydro-equivalent designs

• Experiments have demonstrated CBET mitigation with reduced focal-spot size

• Three dimensional simulations suggest that reducing the laser spot size after 
the third picket (zooming) can recover the hot-spot pressure lost to CBET

• Multilayer targets reduce hot electrons and improve hydrodynamic efficiency
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