Modeling Thomson-Scattering Measurements of Multibeam Two-Plasmon Decay

45th Annual Anomalous Absorption Conference Ventura, CA 14–19 June 2015

R. K. Follett University of Rochester Laboratory for Laser Energetics

Three-dimensional two-plasmon–decay (TPD) simulations were used to reproduce experimental observations

- LPSE (laser-plasma simulation environment) was used to simulate Thomson-scattering (TS) from TPD-driven waves
- The Thomson-scattering spectra shows two large-amplitude peaks corresponding to TPD-driven waves
- A hybrid-particle model was used to calculate the hot-electron distribution
- The simulations reproduce the observed scaling of hot-electron temperature and fraction

Collaborators

J. Shaw, D. H. Edgell, R. J. Henchen, S. X. Hu, J. Katz, D. T. Michel, J. F. Myatt, A. A. Solodov, C. Stoeckl, B. Yaakobi, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

Outline

- Thomson-scattering experiments
- Simulations
- Hard x-ray measurements

Outline

- Thomson-scattering experiments
- Simulations
- Hard x-ray measurements

Planar-target experiments were performed to observe TPD common electron plasma waves (EPW's) driven along the target normal

E24211

(forward-propagating)

k_{2,i} (backward-propagating)

**D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).

Thomson scattering was configured to observe plasma waves along the target normal

Thomson scattering was used to probe two different locations inside and outside the Landau cutoff

Large-amplitude TPD-driven waves were observed when probing inside of the Landau cutoff

The lower-amplitude peak corresponds to wavelengths consistent with backwardpropagating EPW's that are not directly observed by Thomson scattering.

E24213

The lower-amplitude peak corresponds to Langmuir decay of backward-propagating TPD waves

 $k_{EPW} = k'_{EPW} + k_{IAW}$

(forward-propagating)

*IAW: ion-acoustic waves

Broad thermal Thomson-scattering features were observed when probing outside the Landau cutoff

The common-wave peak is narrower than the thermal-scattering peaks, indicating a limited range of driven EPW's

*LDI: Langmuir-decay instability

An alternate Thomson-scattering geometry probed a range of wave vectors where the common-wave matching conditions were not satisfied

Large-amplitude TPD and Langmuir-decay–driven waves were observed in the non-common-wave scattering configuration

The observation of TPD and Langmuir-decay–instability driven waves in the noncommon-wave geometry indicates a broad spectrum (k space) of driven waves.

E24153

Outline

- Thomson-scattering experiments
- Simulations
- Hard x-ray measurements

E24146b

Three-dimensional simulations were required to capture the multibeam geometry and turbulent nature of the plasma instabilities

LPSE* uses an established model that includes

- Experimental beam geometry
- Three-wave interactions
 - two-plasmon decay
 - Langmuir decay
 - modulational instability
- Strong turbulence
 - cavitation
 - collapse
- Hybrid-particle model
 - electron-velocity distribution
 - nonlinear Landau damping

*J. F. Myatt, this conference

LPSE solves a pair of equations that model the coupling between the envelope of high-frequency-electrostatic perturbations and low-frequency-density perturbations*

E24154

*D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001).

The hybrid-particle model uses the longitudinal fields to accelerate electrons and modify the electron-velocity distribution

- Electron trajectories are solved exactly using the electrostatic potentials
- The electron-velocity distribution is used to calculate Landau damping

E24157

Electron-energy distribution

LPSE simulated the region of the plasma observed with Thomson scattering

LPSE geometry

LPSE simulations predict a broad spectrum of driven EPW's

 $k_{\rm x} c / \omega_0$

Simulated scattering spectra from LPSE reproduce the observed scattering peaks in both Thomson-scattering configurations

*R. K. Follett et al., Phys. Rev. E <u>91</u>, 031104 (2015).

Outline

- Thomson-scattering experiments
- Simulations
- Hard x-ray measurements

E24146c

Hard x-ray detectors were used to measure the hot-electron distribution

*HXRD: Hard x-ray detector **HERIE: High-energy-radiography imager

The HERIE channels were fit to the spectral flux calculated using Monte Carlo simulations of a Maxwellian electron energy distribution

$$\mathsf{PSL}_{\mathsf{hot},\mathsf{i}} = \mathbf{n}_{\mathsf{e}} \sqrt{\frac{32}{\pi m_{\mathsf{e}}}} \int \mathsf{d}t \int \mathsf{d}A \int \mathsf{d}\Omega \int \mathsf{S}_{\mathsf{i}}(\mathsf{E}) \mathbf{M}_{\mathsf{e}} \,_{\mathcal{Y}}(\mathsf{E},\Omega)$$

ROCHESTER

E24268

To make a direct comparison between hot-electron measurements and simulations, it is necessary to account for spatial and temporal variations present in the experiment

A series of LPSE runs combined with hydrodynamic predictions from DRACO were used to calculate an expected hot-electron fraction

E24275

LPSE reproduces the observed scaling in hot-electron temperature and fraction

Three-dimensional two-plasmon–decay (TPD) simulations were used to reproduce experimental observations

- LPSE (laser-plasma simulation environment) was used to simulate Thomson-scattering (TS) from TPD-driven waves
- The Thomson-scattering spectra shows two large-amplitude peaks corresponding to TPD-driven waves
- A hybrid-particle model was used to calculate the hot-electron distribution
- The simulations reproduce the observed scaling of hot-electron temperature and fraction

