Diagnosing Cross-Beam Energy Transfer Using Beamlets of Unabsorbed Light from Direct-Drive Implosions

Image of 351-nm light from OMEGA implosions

D. H. Edgell **University of Rochester** Laboratory for Laser Energetics

45th Annual Anomalous Absorption Conference Ventura, CA 14-19 June 2015

Summarv

The unabsorbed light from individual beamlets is a powerful tool to diagnose implosions

- Images of 351-nm light from OMEGA implosions show a unique and distinct "spot" corresponding to each drive beam
- Each spot is a record of the unabsorbed light from a single "beamlet" originating from a particular location (impact parameter, polar angle) in the beam profile
- The OMEGA Thompson-scattering system (TSS) provides both timeintegrated images of all the beamlet spots and time-varying, spectrally resolved streaks of the light from individual beamlets
- This can be used to diagnose how cross-beam energy transfer (CBET) affects different parts of the beam profile and provide benchmarking for hydrodynamics codes

2

Collaborators

R. K. Follett, V. N. Goncharov, I. V. Igumenshchev, J. Katz, J. F. Myatt, W. Seka, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

A 351-nm camera records the unabsorbed light of a beamlet from each OMEGA beam

• Light reaching a scattered-light detector originates from each beam

A 351-nm camera records the unabsorbed light of a beamlet from each OMEGA beam

- Light reaching a scattered-light detector from each beam
- Recorded light originates from a determinable point in a beam profile
 - impact parameter
 - polar angle

A 351-nm camera records the unabsorbed light of a beamlet from each OMEGA beam

- Light reaching a scattered-light detector from each beam
- Recorded light originates from a determinable point in a beam profile
 - impact parameter
 - polar angle
- This light can be considered as sampled from a small component of the incident beam
 - a "beamlet"

A 351-nm camera records the unabsorbed light of a beamlet from each OMEGA beam

- Light reaching a scattered-light detector from each beam
- Recorded light originates from a determinable point in a beam profile
 - impact parameter
 - polar angle
- This light can be considered as sampled from a small component of the incident beam
 - a "beamlet"
- Unabsorbed light from this beam appears as a spot in the image plane

The position of each beamlet spot varies dynamically as the coronal plasma changes in time

We will use solid plastic targets to minimize the spot motion during implosion experiments.

Streaking the light from a single spot gives the time-varying, spectrally resolved intensity from a beamlet

- A pinhole is placed at the position of a single spot and the light is directed onto a streak camera
- This makes it possible to study timevarying CBET effects on upcoming experiments

Unabsorbed light predictions correlate well with the images in both spot position and intensity

Unabsorbed light modeled using a 3-D CBET postprocessor for hydrodynamics codes

ROCHESTER

Unabsorbed light predictions correlate well with the images in both spot position and intensity

Unabsorbed light modeled using a 3-D CBET postprocessor for hydrodynamics codes

ROCHESTER

Beam 62

Beam 39

The beamlet spots can be used to diagnose the variation in CBET over a beam profile

Three-dimensional CBET modeling predicts that turning off one beam can reduce the intensity of some other spots by over 15%

There are other possible measurements that could be made using beamlet spots in the future

- In polar-direct-drive implosions, CBET is stronger and more concentrated in certain beams that cross near the equator
 - up to 20% to 30% change in some spot intensities are predicted when a different beam is dropped
- It may also be possible to diagnose CBET by using a Wollaston prism to separate the polarization of beamlets into orthogonal components*
- The time-varying position of the beam spots as the capsule implodes could provide an implosion-trajectory diagnostic

E24114

* D. Turnbull et al., Rev. Sci. Instrum. 85, 11E603 (2014).

Summary/Conclusions

The unabsorbed light from individual beamlets is a powerful tool to diagnose implosions

- Images of 351-nm light from OMEGA implosions show a unique and distinct "spot" corresponding to each drive beam
- Each spot is a record of the unabsorbed light from a single "beamlet" originating from a particular location (impact parameter, polar angle) in the beam profile
- The OMEGA Thompson-scattering system (TSS) provides both timeintegrated images of all the beamlet spots and time-varying, spectrally resolved streaks of the light from individual beamlets
- This can be used to diagnose how cross-beam energy transfer (CBET) affects different parts of the beam profile and provide benchmarking for hydrodynamics codes

19