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Summary

Polar-direct-drive (PDD) implosions of Si-coated CH targets are used 
to benchmark the 2-D cross-beam energy transfer model in DRACO

•	 Self-emission images were used to measure the mass ablation rate and 
shell velocity in symmetric experiments to distinguish between thermal 
transport models in hydrodynamic simulations

•	 Angularly resolved measurements in PDD experiments were used to 
isolate the effect of cross-beam energy transport (CBET) on the laser-
energy coupling

•	 A multiplier of two on the CBET gain calculated by the current model in 
the hydrodynamic code DRACO was required to match the experimental 
mass ablation rate and shell trajectory
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Direct-drive inertial confinement fusion implosions are driven by laser 
energy absorbed near the critical density and transported by electrons 
to the ablation surface
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Measurements of the shell trajectory (Vshell) and mass 
ablation rate (dM/dt) constrain the coupling physics.
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Cross-beam energy transfer significantly degrades the coupling 
of laser energy to the target
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X-ray self-emission images were used to measure the mass ablation rate 
of the Si and the trajectory of the shell
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X-ray self-emission images were used to measure the mass ablation rate 
of the Si and the trajectory of the shell
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X-ray self-emission images were used to measure the mass ablation rate 
of the Si and the trajectory of the shell
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X-ray self-emission images were used to measure the mass ablation rate 
of the Si and the trajectory of the shell
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The ablation front trajectory was measured in a series of time-resolved images
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Shell trajectory
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The Si/CH interface trajectory was measured in a series 
of time-resolved images
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The Si/CH interface trajectory was measured in a series 
of time-resolved images
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The time that the laser burns through the Si is determined from the time when 
the interface (outer peak) and ablation front (inner peak) separate.
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The time-resolved mass ablation rate was determined 
by varying the Si thickness
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These measurements were used to distinguish between 
thermal transport models
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The flux-limited (FL = 0.06) model predicts a slower shell velocity 
and lower mass ablation rate than measured.
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The simulation that includes models for nonlocal electron thermal transport 
and CBET predicts the mass ablation rate well but suggests a faster shell 
velocity than was measured
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A multiplier of two on the CBET gain improves the agreement 
with measured trajectories
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An adjustment to the nonlocal model might provide similar improvement.
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PDD allows CBET and thermal transport physics to be evaluated independently
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CBET primarily affects drive at the equator, while thermal transport 
influences drive similarly at all angles.
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The simulation including NL and CBET models shows good agreement 
with measurements at the pole but overpredicts the drive at the equator
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Summary/Conclusions
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Polar-direct-drive (PDD) implosions of Si-coated CH targets are used 
to benchmark the 2-D cross-beam energy transfer model in DRACO

•	 Self-emission images were used to measure the mass ablation rate and 
shell velocity in symmetric experiments to distinguish between thermal 
transport models in hydrodynamic simulations

•	 Angularly resolved measurements in PDD experiments were used to 
isolate the effect of cross-beam energy transport (CBET) on the laser-
energy coupling

•	 A multiplier of two on the CBET gain calculated by the current model in 
the hydrodynamic code DRACO was required to match the experimental 
mass ablation rate and shell trajectory
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DRACO simulations of cryogenic implosions show that perturbations 
have a minimal impact on the measurement of the burnthrough time*
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*DRACO simulations were performed with and without perturbations seeded
by target offset, DT ice roughness, and laser imprint up to mode 150.
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