Effects of Long- and Intermediate-Wavelength Asymmetries on Hot-Spot Energetics

A. Bose
University of Rochester
Laboratory for Laser Energetics

45th Annual Anomalous Absorption Conference
Ventura Beach, CA
14–19 June 2015
Summary

Low and intermediate-mode nonuniformities lead to different degradation mechanisms of inertial confinement fusion (ICF) implosion performance

- Low-mode ($\ell \sim 2$) asymmetries show a drop in hot-spot pressure while the hot-spot volume is unchanged
- Intermediate-mode ($\ell \sim 10$) asymmetries result in a smaller hot-spot volume, while the pressure is not significantly degraded
- Large-amplitude intermediate modes exhibit a “secondary-piston effect,” allowing for a secondary conversion of the shell’s kinetic energy to hot-spot internal energy
- The signatures of single-mode nonuniformities can provide physical insight into the understanding of implosion results
Collaborators

R. Betti, K. M. Woo, and A. R. Christopherson
University of Rochester
Laboratory for Laser Energetics

D. Shvarts
Physics Department, Nuclear Research Center–Negev
Implosion performances are quantified using the following hydrodynamic and burn parameters:

- **Yield** (Y), neutron rate (\dot{Y}) and burnwidth (τ):

 \[Y = \int dt \int dV \frac{n^2 \langle \sigma v \rangle}{4} \rightarrow \dot{Y} = \int dV \frac{n^2 \langle \sigma v \rangle}{4} \]

- Neutron-averaged quantities: Temperature (T), and pressure (P)

 \[\langle Q \rangle = \frac{\int dt \int dV \frac{n^2 \langle \sigma v \rangle}{4} Q}{Y} \]

- **YOC** $\equiv \left(\frac{Y \text{ from experiments or 3-D/2-D simulations}}{Y \text{ from 1-D simulations}} \right)$

- **Burn volume** (V)

*YOC: yield over clean

A new definition for the burn volume is introduced, it is the volume of the confined plasma that produces neutrons.

\[V = \frac{\int dt \left(\int dV \frac{n^2 \langle \sigma v \rangle}{4} \right)^2}{\int dt \int dV \left(\frac{n^2 \langle \sigma v \rangle}{4} \right)^2} \]

- The burn volume is an essential simulation diagnostic to explain neutron yields.
The effect of instabilities are studied by rewriting the yield in terms of the hot-spot quantities

- **Yield:** \(Y \sim P^2 \frac{\langle \sigma v \rangle}{T^2} V \tau \)

- The temperature dependence of the fusion reactivity in the range of \(2 < T < 7 \) keV follows:*
 \[
 \frac{\langle \sigma v \rangle}{T^2} \sim T^{1.72}
 \]

- The yield and YOC can be written as
 \(Y \sim P^2 T^{1.7} V \tau \)

\[
YOC \backsimeq \left(\frac{P_{3-D}}{P_{1-D}} \right)^2 \left(\frac{V_{3-D}}{V_{1-D}} \right) \left(\frac{T_{3-D}}{T_{1-D}} \right)^{1.7} \left(\frac{\tau_{3-D}}{\tau_{1-D}} \right)
\]

R. Betti et al., Phys. Plasmas 17, 058102 (2010).
The radiation–hydrodynamic code **DEC2D/3D** is used to simulate the deceleration phase of implosions.

- This is a Eulerian code with a moving mesh that shrinks radially to maintain high resolution during the compression.
- Hydrodynamic-profiles at the end of the acceleration phase (from the 1-D code **LILAC**) are used as the starting point, followed by a simulation of the deceleration phase in multidimension.
- Single-or multimode velocity perturbations are introduced to the inner surface of the shell.

OMEGA and extrapolated ignition targets show similar trends; therefore, the analysis is applicable to both scales.

- Low modes ($1 \leq \ell \leq 5$) arise mainly because of target offset**
- Intermediate modes ($5 \leq \ell \leq 60$) can arise because of multiple effects, including surface defects***
- Some intermediate modes ($\ell \sim 10$ and $\ell \sim 18$) can be seeded in excess by the overlap intensity arising from the beam geometry**

OMEGA and extrapolated ignition targets show similar trends;* therefore, the analysis is applicable to both scales

- Low modes \((1 \leq \ell \leq 5)\) arise mainly because of target offset**
- Intermediate modes \((5 \leq \ell \leq 60)\) can arise because of multiple effects, including surface defects***
- Some intermediate modes \((\ell \sim 10 \text{ and } \ell \sim 18)\) can be seeded in excess by the overlap intensity arising from the beam geometry**

Single-mode nonuniformities have a distinct effect on the shape of the fuel and hot spot.
While intermediate-ℓ modes exhibit yield degradation caused primarily by a drop in volume, low-ℓ modes show no reduction in volume.

\[
YOC \approx \left(\frac{P}{P_{1-D}} \right)^2 \left(\frac{V}{V_{1-D}} \right) \left(\frac{T}{T_{1-D}} \right)^{1.7} \left(\frac{\tau}{\tau_{1-D}} \right)
\]
Yield degradation from low-ℓ modes result from a significant reduction in pressure compared to the 1-D value.

\[
\text{YOC} \approx \left(\frac{P}{P_{1-D}} \right)^2 \left(\frac{V}{V_{1-D}} \right) \left(\frac{T}{T_{1-D}} \right)^{1.7} \left(\frac{\tau}{\tau_{1-D}} \right)
\]
Rayleigh–Taylor spike convergence results in an increase in the central pressure for intermediate-ℓ modes even when the YOC decreases: secondary piston

- Residual shell kinetic energy for low mode ~ 200 J
- Secondary conversion of shell kinetic energy to hot-spot internal energy for intermediate mode ~ 200 J
Three-dimensional simulations with single mode ($\ell = 10, m = 10$) confirm the “secondary-piston” effect.

Central region with $P \sim 150$ Gbar (higher than unperturbed $P \sim 110$ Gbar)

At peak neutron rate

ρ (g/cm3)

0

200

400

P (Gbar)

0

75

150

Ion temperatures are little affected by nonuniformities up to yield degradations of $\sim 50\%$.

\[
\text{YOC} \approx \left(\frac{P}{P_{1-D}} \right)^2 \left(\frac{V}{V_{1-D}} \right) \left(\frac{T}{T_{1-D}} \right)^{1.7} \left(\frac{\tau}{\tau_{1-D}} \right)
\]
Burnwidths are reduced only for intermediate-\(\ell\) modes because of the secondary-piston effect.

The burn widths are comparable for YOC > 0.6

\[
\text{YOC} \approx \left(\frac{P}{P_{1-D}} \right)^2 \left(\frac{V}{V_{1-D}} \right) \left(\frac{T}{T_{1-D}} \right)^{1.7} \left(\frac{\tau}{\tau_{1-D}} \right)
\]
The understanding can be extended to explain trends in results with multimode nonuniformities.

Clean

Multimode

With superposition of low modes and intermediate \(\ell = 10 \) mode.
Multimode simulations can be explained by superposing the trends shown by low and intermediate modes.
Low and intermediate-mode nonuniformities lead to different degradation mechanisms of inertial confinement fusion (ICF) implosion performance:

- Low-mode ($\ell \sim 2$) asymmetries show a drop in hot-spot pressure while the hot-spot volume is unchanged.
- Intermediate-mode ($\ell \sim 10$) asymmetries result in a smaller hot-spot volume, while the pressure is not significantly degraded.
- Large-amplitude intermediate modes exhibit a “secondary-piston effect,” allowing for a secondary conversion of the shell’s kinetic energy to hot-spot internal energy.
- The signatures of single-mode nonuniformities can provide physical insight into the understanding of implosion results.