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Summary

Low and intermediate-mode nonuniformities lead to different degradation 
mechanisms of inertial confinement fusion (ICF) implosion performance

• Low-mode (, ~ 2) asymmetries show a drop in hot-spot pressure while
 the hot-spot volume is unchanged

• Intermediate-mode (, ~ 10) asymmetries result in a smaller hot-spot volume, 
while the pressure is not significantly degraded

• Large-amplitude intermediate modes exhibit a “secondary-piston effect,” 
allowing for a secondary conversion of the shell’s kinetic energy to hot-spot 
internal energy

• The signatures of single-mode nonuniformities can provide physical insight 
into the understanding of implosion results
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• Yield (Y), neutron rate (Y) and burnwidth (x) : 

• Neutron-averaged quantities: 

•

• Burn volume (V)

TC12202

Implosion performances are quantified using the following 
hydrodynamic and burn parameters
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*R. Betti et al., Phys. Plasmas 17, 058102 (2010).
P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010).

*YOC: yield over clean
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A new definition for the burn volume is introduced, it is the volume 
of the confined plasma that produces neutrons

• The burn volume is an essential simulation 
diagnostic to explain neutron yields
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The effect of instabilities are studied by rewriting the yield in terms 
of the hot-spot quantities

• Yield:

• The temperature dependence of the fusion reactivity in the range 
of 2 < T < 7 keV follows*:

• The yield and YOC can be written as
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*R. Betti et al., Phys. Plasmas 17, 058102 (2010).
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The radiation–hydrodynamic code DEC2D/3D* is used to simulate 
the deceleration phase of implosions

• This is a Eulerian code with a moving mesh that shrinks radially
 to maintain high resolution during the compression

• Hydrodynamic-profiles at the end of the acceleration phase (from the 1-D 
code LILAC**) are used as the starting point, followed by a simulation

 of the deceleration phase in multidimension

• Single-or multimode velocity perturbations are introduced
 to the inner surface of the shell
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*K. Anderson, R. Betti, and T. A. Gardiner, Bull. Am. Phys. Soc. 46, 280 (2001);
A. Bose et al., “Hydrodynamic Scaling of the Deceleration-Phase Rayleigh–
Taylor Instability,” submitted to Physics of Plasmas; K. M. Woo et al., Bull. 
Am. Phys. Soc. 59, 354 (2014).

**J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).
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OMEGA and extrapolated ignition targets show similar trends;* 
therefore, the analysis is applicable to both scales
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*A. Bose et al., “Hydrodynamic Scaling of the Deceleration-Phase 
Rayleigh–Taylor Instability,” submitted to Physics of Plasmas.

**S. X. Hu et al., Phys. Plasmas 16, 112706 (2009).
***P. B. Radha et al., Phys. Plasmas 12, 032702 (2005).

• Low modes (1 # , # 5) arise mainly because
 of target offset**

• Intermediate modes (5 # , # 60) can arise because 
of multiple effects, including surface defects***

• Some intermediate modes (, ~ 10 and , ~ 18) 
can be seeded in excess by the overlap intensity 
arising from the beam geometry***
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*A. Bose et al., “Hydrodynamic Scaling of the Deceleration-Phase 
Rayleigh–Taylor Instability,” submitted to Physics of Plasmas.

**S. X. Hu et al., Phys. Plasmas 16, 112706 (2009).
***P. B. Radha et al., Phys. Plasmas 12, 032702 (2005).

OMEGA and extrapolated ignition targets show similar trends;* 
therefore, the analysis is applicable to both scales

• Low modes (1 # , # 5) arise mainly because
 of target offset**

• Intermediate modes (5 # , # 60) can arise because 
of multiple effects, including surface defects***

• Some intermediate modes (, ~ 10 and , ~ 18) 
can be seeded in excess by the overlap intensity 
arising from the beam geometry***
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Single-mode nonuniformities have a distinct effect on the shape 
of the fuel and hot spot
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While intermediate-, modes exhibit yield degradation caused primarily 
by a drop in volume, low-, modes show no reduction in volume
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Yield degradation from low-, modes result from a significant 
reduction in pressure compared to the 1-D value
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Rayleigh–Taylor spike convergence results in an increase in the central pressure 
for intermediate-, modes even when the YOC decreases: secondary piston

• Residual shell kinetic energy for low
 mode ~200 J

• Secondary conversion of shell kinetic energy 
to hot-spot internal energy for intermediate 
mode ~200 J
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Three-dimensional simulations with single mode (, = 10, m = 10) 
confirm the “secondary-piston” effect
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*K. M. Woo et al., Bull. Am. Phys. Soc. 59, 354 (2014).
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Ion temperatures are little affected by nonuniformities 
up to yield degradations of ~50%
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Burnwidths are reduced only for intermediate-, modes 
because of the secondary-piston effect
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The understanding can be extended to explain trends in results 
with multimode nonuniformities
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Multimode simulations can be explained by superposing the trends 
shown by low and intermediate modes
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Summary/Conclusions
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Low and intermediate-mode nonuniformities lead to different degradation 
mechanisms of inertial confinement fusion (ICF) implosion performance

• Low-mode (, ~ 2) asymmetries show a drop in hot-spot pressure while
 the hot-spot volume is unchanged

• Intermediate-mode (, ~ 10) asymmetries result in a smaller hot-spot volume, 
while the pressure is not significantly degraded

• Large-amplitude intermediate modes exhibit a “secondary-piston effect,” 
allowing for a secondary conversion of the shell’s kinetic energy to hot-spot 
internal energy

• The signatures of single-mode nonuniformities can provide physical insight 
into the understanding of implosion results
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