Observation of Two-Plasmon–Decay Common Plasma Waves Using UV Thomson Scattering

R. K. Follett University of Rochester Laboratory for Laser Energetics 44th Annual Anomalous Absorption Conference Estes Park, CO 8–13 June 2014

Summary

Electron plasma waves (EPW's) driven by common-wave two-plasmon decay (TPD) were observed on OMEGA using UV Thomson scattering

- TPD-driven EPW's driven by five OMEGA beams at 23° to target normal were observed in two different scattering geometries
- A narrow spectral feature, consistent with scattering from waves driven on the TPD maximum-growth hyperbola, was observed when probing the common EPW
 - a second scattering feature was observed at a frequency consistent with Langmuir decay of TPD-backscattered EPW's
- Broad TPD-driven spectral features were observed when probing k vectors off of the maximum growth hyperbola, consistent with TPD k-space saturation

D. H. Edgell, R. J. Henchen, S. X. Hu, D. T. Michel, J. F. Myatt, H. Wen, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

Multiple beams can drive a common electron plasma wave when they share the same relative angle

Simulations have shown *k*-space saturation in the nonlinear stage of two-plasmon decay*

E23211

CHESTER

**J. F. Myatt et al., Phys. Plasmas 20, 052705 (2013).

Thomson scattering (TS) was used to observe the common electron plasma wave driven by five OMEGA beams

E23199 ROCHESTER

Thomson scattering probes a finite region of both physical and *k* space

E23213 ROCHESTER

The range of densities where TPD-driven waves are observed is limited by the range of *k* space probed by Thomson scattering

TPD maximum growth hyperbola and dispersion/matching equations

$$\frac{n_{\rm e}}{n_{\rm c}} \approx \frac{1}{4} \left[1 - \frac{9}{4} \frac{v_{\rm te}^2}{c^2} \left(1 + 4 \frac{k_1^2}{k_0^2} - \sqrt{8 \frac{k_1^2}{k_0^2} + 1} \right) \right]$$

*D. T. Michel et al., Phys. Plasmas 20, 055703 (2013).

8

6

4

2

Linear growth rate

(×10¹² 1/s)

E23214 ROCHESTER

A narrow TPD-driven feature is observed in the common-wave scattering geometry consistent with the limited density range defined by TPD

CHESTER

Langmuir decay of backscattered TPD EPW's can generate waves that *k* match the Thomson-scattering geometry

The frequencies of the primary and LDI peaks calculated from the linear dispersion relations and the TPD maximumgrowth hyperbola are consistent with the experiment

An alternate Thomson-scattering geometry was used to observe a region of *k* space off of the maximum growth hyperbola

A broad TPD driven spectrum is observed in the off-hyperbola configuration

LL

The broad spectrum is consistent with *k* space saturation of TPD driven waves

The lower-frequency peak is consistent with a calculated spectrum using the *k*-vector range inferred from the forward-scattered peak (k_0 to $2k_0$)

Summary/Conclusions

Electron plasma waves (EPW's) driven by common-wave two-plasmon decay (TPD) were observed on OMEGA using UV Thomson scattering

- TPD-driven EPW's driven by five OMEGA beams at 23° to target normal were observed in two different scattering geometries
- A narrow spectral feature, consistent with scattering from waves driven on the TPD maximum-growth hyperbola, was observed when probing the common EPW
 - a second scattering feature was observed at a frequency consistent with Langmuir decay of TPD-backscattered EPW's
- Broad TPD-driven spectral features were observed when probing k vectors off of the maximum growth hyperbola, consistent with TPD k-space saturation

