Measurements of the Divergence of Fast Electrons in Laser-Irradiated Spherical Targets

X-ray pinhole camera • TCS 1.2 **Relative signals** • XRS --HXR • MC **0.8** D^{1.7} 0.4 0.0 200 400 800 1000 600 0 Mo K_{α} yield Mo ball diameter (μ m) **HXR** detector

A. A. Solodov University of Rochester Laboratory for Laser Energetics 43rd Annual Anomalous Absorption Conference Stevenson, WA 7–12 July 2013

Summary

Measurements indicate that only 25% of the hot electrons produced by two-plasmon decay (TPD) would preheat the fuel in direct-drive experiments*

- In direct-drive experiments on OMEGA, the energy in fast electrons was found to reach ~1% of the laser energy at an irradiance of ~1.1 \times 10¹⁵ W/cm²
- The divergence of fast electrons was deduced from experiments where Mo-coated shells of increasing diameter (*D*) were embedded within an outer CH shell
- The intensity of the Mo-K $_{\alpha}$ line and the hard x-ray radiation increased approximately as $\sim D^2$, indicating a wide divergence of fast electrons
- Alternative interpretations of these results (electron scattering, radiative excitation of K_{α} , and an electric field caused by the return current) are shown to be unimportant

UR

^{*}B. Yaakobi, A. A. Solodov, J. F. Myatt, J. A. Delettrez, C. Stoeckl, and D. H. Froula, submitted to Physical Review Letters.

B. Yaakobi, J. F. Myatt, J. A. Delettrez, F. J. Marshall, C. Stoeckl, and D. H. Froula

Laboratory for Laser Energetics University of Rochester

TPD generates hot electrons that can couple energy to the imploding shell, raising the adiabat and potentially quenching ignition

Direct-drive ignition requires that less than ~0.1% of the laser energy be coupled to the unablated fuel.

Extending the intensity to ignition conditions indicates that ~1% of the laser energy can be converted to hot electrons with a characteristic temperature of 50 to 100 keV

• The experiments suggest that the hot-electron fraction has the same scaling with the temperature in different geometries

In typical cryogenic direct-drive experiments* only ~1/4 of the fast electrons will be intercepted by the compressed fuel if the hot electrons have a wide angular divergence

- Fast electrons are generated near the end of the laser pulse** when the density scale length is maximal
- At that time the compressed fuel shell has converged to about half the original target size*

^{*} V. N. Goncharov *et al.*, Phys. Rev. Lett. <u>104</u>, 165001 (2010). ** C. Stoeckl *et al.*, Phys. Rev. Lett. 90, 235002 (2003).

The divergence of fast electrons was studied using targets with Mo spheres of different diameters

- 26-kJ, 1-ns square-shaped OMEGA pulses with $I_{\rm L} \sim 1.1 \times 10^{15} \, {\rm W/cm^2}$ were used
- Mo K_{α} and hard x-ray (HXR) energy dependence on the diameter
 - is unchanged for directed electrons
 - increases for divergent electrons

The transport of hot electrons was modeled with the Monte Carlo code *EGSnrc**

- EGSnrc modeled the transport of hot electrons and electron-induced HXR and Mo K-shell fluorescent radiation
- EGSnrc simulations assumed a 3-D Maxwellian hot-electron distribution with the temperature predicted by the four-channel HXR detector
- The divergence of hot electrons was varied from 0° (parallel beam) to 180° (isotropic beam)

I. Kawrakow, Med. Phys. <u>27</u>, 485 (2000).

^{*} I. Kawrakow et al., NRC, Ottawa, Canada, NRCC Report PIRS-701 (May 2011);

The experiments show that fast electrons have a wide divergence extending to the original target diameter

UR

- TCS Cauchois-type quartz crystal spectrometer
- XRS two identical planar LiF crystal x-ray spectrometers
- MC simulations assumed an isotropic hot-electron beam

Three alternative explanations to the rise in signals were investigated and found to be unimportant

- Electron scattering in the outer CH shell
- Radiative excitation of the Mo-K $_{\alpha}$ line
- Radial electric field related to the return current within the ionized N₂ fill gas

Electron scattering in CH was shown to be unimportant by *EGSnrc* Monte Carlo simulations

• Electrons that are strongly scattered in CH are also strongly absorbed

K_{α} line pumping by the plasma radiation from the laser absorption region in the CH is unimportant

- Radiation contribution to K_{α} $E_R = \int_{E_0}^{\infty} I_c(E) \omega_K[E(K_{\alpha})/E] dE$, where $I_c(E)$ is the continuum spectrum, $E_0 \sim 20$ keV is the K edge $\omega_K = 0.76$ is the K_{α} fluorescent yield of Mo
- For the largest Mo ball diameter, E_R is less than 10% of the total energy of the K_{α} line
- The relative contribution of the radiation is the same for all Mo diameters (but can best be determined from the largest diameter)

A negligible effect of the retarding electric fields is confirmed by the analytical model using plasma profiles from *LILAC* radiation–hydrodynamic simulations

 $E(r) = J_{hot}(r)/\sigma(r)$, with $J_{hot}(r_{1/4}) = f_{hot} eI_L/E_{hot}$ and $\sigma = 1.96 Ne^2 \tau_e/m_e$, $\sigma(r)$ was estimated using the temperature and ionization of the N₂ gas simulated by the *LILAC* code

Summary/Conclusions

Measurements indicate that only 25% of the hot electrons produced by two-plasmon decay (TPD) would preheat the fuel in direct-drive experiments*

- In direct-drive experiments on OMEGA, the energy in fast electrons was found to reach ~1% of the laser energy at an irradiance of ~1.1 \times 10¹⁵ W/cm²
- The divergence of fast electrons was deduced from experiments where Mo-coated shells of increasing diameter (*D*) were embedded within an outer CH shell
- The intensity of the Mo-K $_{\alpha}$ line and the hard x-ray radiation increased approximately as $\sim D^2$, indicating a wide divergence of fast electrons
- Alternative interpretations of these results (electron scattering, radiative excitation of K_{α} , and an electric field caused by the return current) are shown to be unimportant

^{*}B. Yaakobi, A. A. Solodov, J. F. Myatt, J. A. Delettrez, C. Stoeckl, and D. H. Froula, submitted to Physical Review Letters.