The Nonlinear Behavior of the Two-Plasmon–Decay Instability

Single-beam Zakharov simulations in the nonlinear regime

$\omega/2$ spectrum

$\log_{10}(I)$

Frequency (THz)

Time (ns)

$
\begin{align*}
\frac{\omega}{2} & \text{spectrum} \\
\log_{10}(I) & \\
\text{Frequency (THz)} & \\
\text{Time (ns)}
\end{align*}
$

$\log_{10}(E_{EPW}^{2})$

(arbitrary units)

$\approx \frac{1}{2}$ spectrum

∇n_e

$\frac{k_{\parallel}}{k_0}$

$\frac{k_{\perp}}{k_0}$

$t = 10$ ps

W. Seka et al.
University of Rochester
Laboratory for Laser Energetics

43rd Annual Anomalous Absorption Conference
Stevenson, WA
7–12 July 2013
Our understanding of multibeam two-plasmon decay (TPD) and its nonlinear behavior has significantly advanced over the past decade.

- Multibeam TPD has been firmly established.
- Zakharov models of the TPD instability agree with single and multibeam analytical thresholds and reduced-description particle-in-cell (RPIC) results in the nonlinear regime.
- Nonlinear coupling of primary TPD waves with ion waves leads to a broad Langmuir wave (LW) spectrum evident in $\omega/2$ and $3\omega/2$ spectra.
- Zakharov simulations including quasi-linear diffusion can predict energetic electron production and allow for the investigation of mitigation strategies.
- Half-harmonic ($\omega/2$) spectra have identified temperature islands on the target surface via localized T_e measurements.
Collaborators

University of Rochester
Laboratory for Laser Energetics

D. F. DuBois and D. A. Russell
Lodestar Research Corporation, Boulder, CO

H. X. Vu
University of California, San Diego, CA
The extended Zakharov model of TPD is used to analyze the threshold and nonlinear behavior of the TPD instability.

- **ZAK3D**\(^1\) is an excellent tool for studying the linear stability of multibeam-driven TPD.
- **ZAK3D** includes coupling to ion waves → LW turbulence.
- **QZAK**\(^2\) (2-D version of **ZAK3D**) evolves the distribution function → hot-electron production.
- **QZAK** simulations agree with kinetic RPIC\(^3\) in the nonlinear state in the regimes where they have been compared.
- **ZAK3D** includes multiple beams, extendable to incoherent and multicolor beams.

\(^1\)J. Zhang et al., this conference, and to be submitted to Phys. Plasmas; D. F. DuBois and D. A. Russell earlier work.
The various TPD regimes are clearly visible in single-beam ZAK3D simulations

Absolute instability,\(^*\) \(k_p/k_0 \lesssim 0.1\)

\[
\eta \approx \frac{I_{14} L_\mu}{233 T_{\text{keV}}} > 1
\]

Zakharov simulation linear regime, \(t = 1\) ps

\\\[
\log_{10}\langle E_{\text{EPW}}^2 \rangle \quad (\text{arbitrary units})
\]

Rosenbluth convective gain,

\(k_p/k_0 < k_p,_{\text{max}}, \quad G_c = 2\pi\)

\[
\eta_{\text{conv}} \approx 1.25 \eta_{\text{abs}}
\]

Landau cutoff (LC):

\[
k_p \lambda_{\text{De}} = 0.25
\]

Above the absolute threshold, the TPD Langmuir waves rapidly fill k space to the Landau cutoff limit.

For a single beam there is a very limited linear convective regime.

Single beam, $\eta = 1.3$, $L_n = 150 \mu m$, $T_e = 3$ keV, CH plasma

For a single beam there is a very limited linear convective regime.
Two beams, in-plane polarization
\[\eta = 1 + \delta, \quad L_n = 330 \, \mu m, \quad T_e = 2 \, \text{keV} \] (OMEGA parameters)

Linear regime

Nonlinear regime

Common (shared) plasma-wave regime

E22206
Multibeam absolute TPD thresholds have been computed analytically and with ZAK3D

- Along the solid line the absolute TPD threshold condition is
 \[\eta \approx \frac{I_{14} L \mu}{233 T_{keV}} \]

- The threshold depends on polarization and angle of incidence

\[I_{14} = \sum I_{14, \text{single beam}} \]

R. W. Short’s absolute TPD threshold calculations\(^1\) in 2-D and 3-D agree with Zakharov simulations.\(^2\)

\(^1\)R. W. Short et al., this conference.
\(^2\)J. Zhang et al., this conference.
The TPD instability has several characteristic experimental signatures

- $\omega/2$ and $3\omega/2$ emission spectra
 - TPD occurs from $n_c/4$ to the Landau cutoff ($\sim n_c/5$)
 - wavelength splitting and emitted power scale very nonlinearly with intensity

- Hard x-ray emission
 - the onset is generally observed after that of $\omega/2$ and $3\omega/2$ emission
 - result of energetic electrons generated by plasma waves turbulence
 - E_x and T_e scale nonlinearly with intensity

- The QZAK/ZAK3D simulations are consistent with some of the experimental observations
 - broad-angle hot-electron production
 - threshold scaling with overlapped intensity
 - broadband LW spectrum \rightarrow LC
Multibeam TPD was established in 2003 in planar and implosion experiments using hard x-ray emission.

A scaling for the hot-electron fraction for many experimental configurations was obtained by D. T. Michel et al.* using a common-wave model.

Thomson scattering confirms the Landau cutoff limit*

Half-harmonic generation can be caused by inverse resonance absorption, Thomson scattering, or inverse parametric decay

- The absolute TPD instability \((k_\perp/k_0 \leq 0.1) \) is close to the turning point of one of the TPD plasmons → ideal for plasmon-to-photon conversion via inverse resonance absorption
 - these photons have the smallest red shift from \(\omega_0/2 \) and are emitted along the density gradient

- Thomson scattering using any one of the incident or reflected beams
 - phase-matching conditions are difficult to satisfy for any of the primary TPD plasmons; scattered plasmons are more easily Thomson scattered

- The relative importance of the three processes is being investigated by D. A. Russel and D. F. DuBois
Evidence of nonlinear behavior of the TPD instability is best seen in $\omega/2$ spectra viewing the entire target sphere.

Broadband $\omega/2$ spectra are visible immediately at the start of the TPD instability and are consistent with broad LW spectra in ZAK simulations.

Possible signature of absolute TPD instability

Cryo shot $I_{14} = 9.3$

CH shot $I_{14} = 5.6$
The spectral signature of small-k_{\perp} TPD instability can only be observed by viewing along the density gradient.

\[I_{14} = 5.6 \]

\[I_{14} = 5.76 \]

Small-k_{\perp} TPD instability

Target surface

Imaged area \(\sim 50 \mu m \times 50 \mu m \)

Spectrum

Streak

\[\log_{10}(I) \]

\[\omega/2 \text{ spectrum} \]
Half-harmonic images of imploding targets provide insight to the localized nature of the TPD instability.

\[
\begin{align*}
I_{14} &= 8.6 \\
I_{14} &= 9.4 \\
I_{14} &= 10.6
\end{align*}
\]

Entire \(\omega/2\) spectrum

Blue part of \(\omega/2\) spectrum

Standard tangential illumination

Nonuniform illumination

SG4 phase plate

SG2 phase plate
The spectral signature of the small-k_{\perp} TPD instability near $n_c/4$ is a sharp red-shifted feature that can be used for T_e measurements.

$$\Delta \lambda_{nm} = 4.4 \times 10^{-3} T_{e,\text{keV}}$$

small-k_{\perp} plasmon-to-photon conversion assumed.

Intensity distribution at $n_c/5$ for incident angles $<30^\circ$ for shot 67675 with SG4 phase plates.
T_e varies over the target surface and can exceed LILAC predictions by 10% to 20%.
Two-dimensional and 3-D nonlinear TPD simulations are being used to investigate TPD mitigation strategies

- Ion-wave damping
 - saturated LW intensity and hot-electron production depends on ν_{IAW}^*

- Collisional damping
 - for NIF-scale lengths, the LW collisional damping can become important*

- Broadband and multicolor beam TPD
 - will use ZAK3D

Future TPD simulations will center on quantitative prediction and mitigation options

- Quantitative predictions for fast-electron production \((QZAK\) extended to 3-D in the near future)\)
- Comparison of simulations with experimental fast-electron scaling laws
- TPD mitigation options
- TPD threshold behavior for beams with speckles
Summary/Conclusions

Our understanding of multibeam two-plasmon decay (TPD) and its nonlinear behavior has significantly advanced over the past decade.

- Multibeam TPD has been firmly established.
- Zakharov models of the TPD instability agree with single and multibeam analytical thresholds and reduced-description particle-in-cell (RPIC) results in the nonlinear regime.
- Nonlinear coupling of primary TPD waves with ion waves leads to a broad Langmuir wave (LW) spectrum evident in $\omega/2$ and $3\omega/2$ spectra.
- Zakharov simulations including quasi-linear diffusion can predict energetic electron production and allow for the investigation of mitigation strategies.
- Half-harmonic ($\omega/2$) spectra have identified temperature islands on the target surface via localized T_e measurements.