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The Nonlinear Behavior of the  
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Our understanding of multibeam two-plasmon decay 
(TPD) and its nonlinear behavior has significantly 
advanced over the past decade

E22202a

•	 Multibeam TPD has been firmly established

•	 Zakharov models of the TPD instability agree with single and multibeam 
analytical thresholds and reduced-description particle-in-cell (RPIC) 
results in the nonlinear regime

•	 Nonlinear coupling of primary TPD waves with ion waves leads to a 
broad Langmuir wave (LW) spectrum evident in ~/2 and 3~/2 spectra

•	 Zakharov simulations including quasi-linear diffusion can predict 
energetic electron production and allow for the investigation of 
mitigation strategies

•	 Half-harmonic (~/2) spectra have identified temperature islands  
on the target surface via localized Te measurements

Summary
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The extended Zakharov model of TPD is used to analyze 
the threshold and nonlinear behavior of the TPD instability

E22203

•	 ZAK3D1 is an excellent tool for studying the linear stability 
of multibeam-driven TPD

•	 ZAK3D includes coupling to ion waves " LW turbulence

•	 QZAK2 (2-D version of ZAK3D) evolves the distribution 
function " hot-electron production

•	 QZAK simulations agree with kinetic RPIC3 in the nonlinear 
state in the regimes where they have been compared

•	 ZAK3D includes multiple beams, extendable to incoherent 
and multicolor beams

1	J. Zhang et al., this conference, and to be submitted to Phys. Plasmas;
	 D. F. DuBois and D. A. Russell earlier work.
2	J. F. Myatt et al., Phys. Plasmas 19, 022707 (2012).
3 H. X. Vu et al., Phys. Plasmas 19, 102703 (2012). 
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The various TPD regimes are clearly visible  
in single-beam ZAK3D simulations
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Rosenbluth convective gain,

kp/k0 < kp,max,  Gc = 2r

hconv , 1.25 habs
*A. Simon et al., Phys. Fluids 26, 3107 (1983).
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Above the absolute threshold, the TPD Langmuir waves 
rapidly fill k space to the Landau cutoff limit

E22205

 For a single beam there is a very limited linear convective regime.
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Multibeam simulations show very similar behavior
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Multibeam absolute TPD thresholds have been 
computed analytically and with ZAK3D

E22207

R. W. Short’s absolute TPD threshold calculations1 
in 2-D and 3-D agree with Zakharov simulations.2

I
T
L

233 keV

14
.h

n

I I , gle beamsin14 14=/

1	R. W. Short et al., this conference.
2	J. Zhang et al., this conference.
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The TPD instability has several characteristic 
experimental signatures

E22208

•	 ~/2 and 3~/2 emission spectra

–	 TPD occurs from nc/4 to the Landau cutoff (~nc/5)

–	 wavelength splitting and emitted power scale very nonlinearly with 
intensity

•	 Hard x-ray emission

–	 the onset is generally observed after that of ~/2 and  
3~/2 emission

–	 result of energetic electrons generated by plasma waves turbulence

–	 Ex and Te scale nonlinearly with intensity

•	 The QZAK/ZAK3D simulations are consistent with some of the 
experimental observations

–	 broad-angle hot-electron production

–	 threshold scaling with overlapped intensity

–	 broadband LW spectrum " LC



Multibeam TPD was established in 2003 in planar  
and implosion experiments using hard x-ray emission

E22212 C. Stoeckl et al., Phys. Rev. Lett. 90, 235002 (2003).
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A scaling for the hot-electron fraction for many 
experimental configurations was obtained by  
D. T. Michel et al.* using a common-wave model

E22213 *D. T. Michel et al., Phys. Plasmas 20, 055703 (2012).
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Thomson scattering confirms the Landau cutoff limit*

E22209
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Half-harmonic generation can be caused by inverse 
resonance absorption, Thomson scattering,  
or inverse parametric decay

E22239

•	 The absolute TPD instability (k9/k0 ≤ 0.1) is close to the turning point 
of one of the TPD plasmons " ideal for plasmon-to-photon conversion 
via inverse resonance absorption

–	 these photons have the smallest red shift from ~0/2 
and are emitted along the density gradient

•	 Thomson scattering using any one of the incident or reflected beams

–	 phase-matching conditions are difficult to satisfy for any  
of the primary TPD plasmons; scattered plasmons are more  
easily Thomson scattered

•	 The relative importance of the three processes is being investigated 
by D. A. Russel and D. F. DuBois



Evidence of nonlinear behavior of the TPD instability is 
best seen in ~/2 spectra viewing the entire target sphere

E22240

Broadband ~/2 spectra are visible immediately at the start of the TPD 
instability and are consistent with broad LW spectra in ZAK simulations.
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The spectral signature of small-k9 TPD instability can 
only be observed by viewing along the density gradient

E22210
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Half-harmonic images of imploding targets provide 
insight to the localized nature of the TPD instability

E22211
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The spectral signature of the small-k9 TPD instability 
near nc/4 is a sharp red-shifted feature that can be used 
for Te measurements

E22214
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Elevated temperature islands near nc/4 vary across the target sphere.

Te varies over the target surface and can exceed LILAC 
predictions by 10% to 20%

E22113a
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Two-dimensional and 3-D nonlinear TPD simulations 
are being used to investigate TPD mitigation strategies

TC10463

•	 Ion-wave damping
–	 saturated LW intensity and hot-electron production depends on oIAW*

•	 Collisional damping
–	 for NIF-scale lengths, the LW collisional damping can become important* 

•	 Broadband and multicolor beam TPD
–	 will use ZAK3D

*J. F. Myatt et al., Phys. Plasmas 20, 052705 (2013).
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Future TPD simulations will center on quantitative 
prediction and mitigation options

E22216

•	 Quantitative predictions for fast-electron production 
(QZAK extended to 3-D in the near future)

•	 Comparison of simulations with experimental  
fast-electron scaling laws

•	 TPD mitigation options

•	 TPD threshold behavior for beams with speckles



Summary/Conclsuions

E22202a

Our understanding of multibeam two-plasmon decay 
(TPD) and its nonlinear behavior has significantly 
advanced over the past decade

•	 Multibeam TPD has been firmly established

•	 Zakharov models of the TPD instability agree with single and multibeam 
analytical thresholds and reduced-description particle-in-cell (RPIC) 
results in the nonlinear regime

•	 Nonlinear coupling of primary TPD waves with ion waves leads to a 
broad Langmuir wave (LW) spectrum evident in ~/2 and 3~/2 spectra

•	 Zakharov simulations including quasi-linear diffusion can predict 
energetic electron production and allow for the investigation of 
mitigation strategies

•	 Half-harmonic (~/2) spectra have identified temperature islands  
on the target surface via localized Te measurements


