Time-Resolved Electron-Temperature Measurements Near $n_c/4$ Reveal Temperature Islands on Imploding Targets

![Graphs and images showing temperature and wavelength shift measurements.

T_e, exp and T_e, LILAC are plotted against time with $I_{14} = 5.6$.

W. Seka
University of Rochester
Laboratory for Laser Energetics

43rd Annual Anomalous Absorption Conference
Stevenson, WA
7–12 July 2013
Summary

T_e measurements near $n_c/4$ point toward the existence of temperature islands on the target surface

- T_e measurements near $n_c/4$ are based on a spectral feature of $\omega/2$ emission that is caused by the absolute two-plasmon-decay (TPD) instability
- Implosions close to the TPD threshold confirm T_e from hydrodynamic predictions
- For standard implosions well above the TPD threshold, T_e measurements in hex and pent ports exceed those taken through the focusing lenses
- These observations indicate locally driven, multibeam TPD as well as significant energy input into the TPD plasma waves and elevated temperature islands
Collaborators

Laboratory for Laser Energetics
University of Rochester
For standard (tangential) illumination of the target, multibeam-driven TPD has the lowest thresholds near the hex and pent centers.

- Multibeam-driven TPD was established in 2003*
- Multibeam-driven absolute TPD instability has been shown in Zakharov simulations** as well as analytically***

** J. Zhang et al., this conference and to be submitted to Physics of Plasmas.
*** R. W. Short et al., this conference.
The sharp, red-shifted spectral feature in the $\omega/2$ emission is caused by the absolute instability and serves as the T_e measurement.
The sharp, red-shifted spectral feature in the $\omega/2$ emission is caused by the absolute instability and serves as the T_e measurement.
Emission caused by the absolute TPD instability comes from its turning point and is guided by the density gradient.
Broad spectral components of $\omega/2$ emission require Thomson scattering and TPD plasmon spectra that are very broad in k space.
The $\omega/2$ broadband emission is limited by the Landau cutoff to an $\sim 37^\circ$ half-cone angle

\begin{align*}
\lambda > 702 \text{ nm} & \quad I_{14} = 8.6 \\
\text{Tangential illumination} & \\
\lambda < 702 \text{ nm} & \quad I_{14} = 9.4 \\
\text{Tangential illumination} &
\end{align*}
The $\omega/2$ broadband emission is limited by the Landau cutoff to an $\sim 37^\circ$ half-cone angle.

- $\lambda < 702$ nm \(I_{14} = 10.6 \)
 - Small-beam illumination

- $\lambda < 702$ nm \(I_{14} = 9.4 \)
 - Tangential illumination
The electron temperatures vary in different areas of the target and exceed the \textit{LILAC} prediction by 10% to 20%.
T_e variations over the target entail perturbations of the $n_c/4$ density surface

- To maintain such temperatures differences, hydrodynamic simulations require significant ($>20\%$) local energy deposition around $n_c/4$
Summary/Conclusions

T_e measurements near $n_c/4$ point toward the existence of temperature islands on the target surface

- T_e measurements near $n_c/4$ are based on a spectral feature of $\omega/2$ emission that is caused by the absolute two-plasmon–decay (TPD) instability

- Implosions close to the TPD threshold confirm T_e from hydrodynamic predictions

- For standard implosions well above the TPD threshold, T_e measurements in hex and pent ports exceed those taken through the focusing lenses

- These observations indicate locally driven, multibeam TPD as well as significant energy input into the TPD plasma waves and elevated temperature islands