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Accurate measurements of the shell trajectories 
were obtained for the three ablators

E22155

The good match between simulation and experiment indicate that transfer 
of the absorbed laser energy to the motion of the shell is well modeled.
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A 20% increase in the velocity of the shell is observed 
for Be compared to CH and C ablators

E22149

The increase in A/Z results in the increased shell acceleration 
could be caused by increased absorption or hydroefficiency.
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The absorption was the same for all three materials, 
suggesting increased hydroefficiency

E22154

Simulations that include CBET and nonlocal heat fl ux reproduce 
the amount of laser energy coupled to the plasma.
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Summary

Increasing the ratio of the atomic mass to the atomic 
number (A/Z) of the ablator increases the velocity
of direct-drive implosions

•	 Accurate	measurements	of	the	trajectory	of	imploding	shells	
are made for different ablators

•	 The	hydrodynamic	efficiency	is	calculated	to	increase	with	A/Z

•	 A	20%	increase	in	shell	velocity	was	measured	for	Be	ablators	
compared to C and CH ablators when maintaining

 a constant shell mass

•	 LILAC simulations that include CBET and nonlocal heat 
transport accurately reproduce the measurements

A simple model shows that increasing A/Z increases 
the mass ablation rate and the ablation pressure*
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Increasing A/Z by changing the ablator from CH to Be 
is predicted to increase the implosion velocity. 

*W. M. Manheimer, D. G. Colombant, and J. H. Gardner, Phys. Fluids 25, 1644 (1982).
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An experiment was designed to compare the implosion 
velocity for different ablator materials

E22147

To determine the effect of A/Z on the target performance, 
the velocity must be accurately measured.
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The position of the gradient in the XRFC images 
is measured with an accuracy better than 0.5 nm 
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The XRFC interstrip timing is known to within ~5 ps, 
allowing for a 4% accuracy in the 200-ps-averaged 
shell velocity
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The absolute timing requires cross calibrating 
the XRFC with the pulse shape of the laser
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The absolute timing has been measured on multiple absolute 
timing shots and an accuracy of ~ ±30 ps was inferred.

100

0 50 100

I 
(n

o
rm

al
iz

ed
)

0.0

0.2

0.4

0.6

0.8

1.0

200

Laser
pulse

t = 230 ps

t = 190 ps

t = 150 ps

tlaser (ps)

tXRFC (ps)

300 400

The steep gradient in the x-ray emission is created by 
the combination of the limb effect and the absorption 
of the coronal x-rays in the cold dense shell

E22150

The diagnostic analysis has a very weak dependence 
on the modeling of the plasma conditions.
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D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).

The XRFC was used to measure the trajectory 
of the imploding shell

E22230

To determine the effect of A/Z on the target performance, 
the velocity must accurately measured.
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The hydrodynamic modeling shows that the increase
in A/Z results in an increase in hydrodynamic efficiency

E22156

Simulations show that the hydrodynamic efficiency 
is increased by 18% in Be and 7% in C.
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Summary

Increasing the ratio of the atomic mass to the atomic 
number (A/Z) of the ablator increases the velocity
of direct-drive implosions

•	 Accurate measurements of the trajectory of imploding shells 
are made for different ablators

•	 The hydrodynamic efficiency is calculated to increase with A/Z

•	 A 20% increase in shell velocity was measured for Be ablators 
compared to C and CH ablators when maintaining

	 a constant shell mass

•	 LILAC simulations that include CBET and nonlocal heat 
transport accurately reproduce the measurements
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A simple model shows that increasing A/Z increases 
the mass ablation rate and the ablation pressure*

E22148

Ic 4c s
3t =

~ Z
Am c

/

A c s

2 3
t=o b l~ Z

AP c2
/

A c s
2

31
t= b l

/d
d

t
V

M R
P
4

s

s

A
2r

= ^ h

Increasing A/Z by changing the ablator from CH to Be 
is predicted to increase the implosion velocity. 

*W. M. Manheimer, D. G. Colombant, and J. H. Gardner, Phys. Fluids 25, 1644 (1982).
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An experiment was designed to compare the implosion 
velocity for different ablator materials

E22147

To determine the effect of A/Z on the target performance, 
the velocity must be accurately measured.
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The steep gradient in the x-ray emission is created by 
the combination of the limb effect and the absorption 
of the coronal x-rays in the cold dense shell

E22150

The diagnostic analysis has a very weak dependence 
on the modeling of the plasma conditions.
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The position of the gradient in the XRFC images 
is measured with an accuracy better than 0.5 nm 
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The XRFC interstrip timing is known to within ~5 ps, 
allowing for a 4% accuracy in the 200-ps-averaged 
shell velocity

E22152a
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The absolute timing has been measured on multiple absolute timing 
shots and an accuracy of ~ ±30 ps was inferred.
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The absolute timing requires cross calibrating 
the XRFC with the pulse shape of the laser

E22153a
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The XRFC was used to measure the trajectory 
of the imploding shell

E22230

To determine the effect of A/Z on the target performance, 
the velocity must accurately measured.
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Accurate measurements of the shell trajectories 
were obtained for the three ablators

E22155

The good match between simulation and experiment indicate that transfer 
of the absorbed laser energy to the motion of the shell is well modeled.
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A 20% increase in the velocity of the shell is observed 
for Be compared to CH and C ablators

E22149

The increase in A/Z results in the increased shell acceleration 
could be caused by increased absorption or hydroefficiency.
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The absorption was the same for all three materials, 
suggesting increased hydroefficiency

E22154

Simulations that include CBET and nonlocal heat flux reproduce 
the amount of laser energy coupled to the plasma.
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The hydrodynamic modeling shows that the increase
in A/Z results in an increase in hydrodynamic efficiency

E22156

Simulations show that the hydrodynamic efficiency 
is increased by 18% in Be and 7% in C.
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Summary/Conclusions

E22146

Increasing the ratio of the atomic mass to the atomic 
number (A/Z) of the ablator increases the velocity
of direct-drive implosions

•	 Accurate measurements of the trajectory of imploding shells 
are made for different ablators

•	 The hydrodynamic efficiency is calculated to increase with A/Z

•	 A 20% increase in shell velocity was measured for Be ablators 
compared to C and CH ablators when maintaining

	 a constant shell mass

•	 LILAC simulations that include CBET and nonlocal heat 
transport accurately reproduce the measurements


