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DRACO-simulated intensity scaling of Ln is in very good 
agreement with the self-similar model prediction

TC10443 *D. Haberberger, this conference.
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Direct measurements
of Ln are underway.*

Two-dimensional DRACO simulations* of these 
experiments provide the basic plasma conditions
at nc/4 to understand LPI 

TC10441 *S. X. Hu et al., Phys. Plasmas 20, 032704 (2013).
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Both DRACO simulations and the self-similar 
model predict the linear scaling of Iqc with 
the incident intensity

TC10619
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Hydro-calculated laser-intensity scalings for producing 
NIF-scale plasmas on OMEGA have been confi rmed by 
experiments and self-simlilar model predictions

TC10609

Summary

•	 The	hydro-conditions	of	National	Ignition	Facility	(NIF)-scale 
plasmas at the quarter-critical density regime are important 
for understanding laser–plasma instabilities (LPI’s)

•	 A	self-similar	model	for	LPI experiments on OMEGA 
predicts at nc/4 that

– Ln (nm) ? I1/4

– Te (keV) ?	I1/2

– Iqc ? I

•	 These	predictions	are	reproduced	by	2-D	hydro	simulations

•	 DRACO simulations further indicated that scale-length 
plasmas of Ln ~ 500 nm can be created with concave 
spherical half-shells

Understanding and mitigating two-plasmon–decay (TPD) 
instability relies on the accurate knowledge of plasma 
conditions at nc/4

TC10610

•	 Long-scale-length	plasmas	(Ln > 400 nm), which favor 
TPD-instability growth, can be encountered in direct-
drive–ignition implosions on the NIF

•	 To	understand	the	laser-intensity	scaling	of	TPD-induced	
fast electrons, it is crucial to know the exact plasma 
conditions (Ln, Te, Iqc) at the quarter-critical density

•	 Benchmarking	the	hydro-simulated	plasma	conditions	
at nc/4 with measurements and model analyses provide 
more confi dence in the TPD-instability studies

Long-scale-length plasma experiments with planar CH 
targets have been performed at the Omega Laser Facility 
using different distributed phase plates (DPP’s)*
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The full-aperature backscatter station (FABS) 
measurement of light refl ection by the rarefaction wave 
benchmarks the DRACO-predicted hydrodynamics
of coronal plasmas

TC10613
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The Thomson-scattering measurement of the electron 
temperature at nc/4 showed good agreement with 
hydro simulations
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The self-similar model* is used to understand
the laser-ablated slab plasma formation

TC10615

•	 Solving	the	hydrodynamic	equation	with	the	self-similar	
dimensionless coordinate p 
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*S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam 
Plasma Interaction, Hydrodynamics, Hot Dense Matter, International 
Series of Monographs on Physics (Clarendon Press, Oxford, 2004).

Two-dimensional DRACO simulations* of these 
experiments provide the basic plasma conditions
at nc/4 to understand LPI 

TC10441 *S. X. Hu et al., Phys. Plasmas 20, 032704 (2013).
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The laser-intensity scaling of Ln, Te, and Iqc can be 
derived from the self-similar model solutions

TC10616

•	 The	defi	nition	of	Ln and the equation-of-state 
(EOS) relationship of e ~ kTe
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With concave spherical half-shells, DRACO simulations 
predicted NIF-scale plasmas with even longer density 
scale lengths (Ln ~ 500 nm)

TC10620

Measurements showed ~3× higher hard x-ray signals for concave targets 
with inner illumination than outer illumination at the same intensity. 
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Hydro-calculated laser-intensity scalings for producing 
NIF-scale plasmas on OMEGA have been confirmed by 
experiments and self-simlilar model predictions

TC10609

Summary

•	 The	hydro-conditions	of	National	Ignition	Facility	(NIF)-scale 
plasmas at the quarter-critical density regime are important 
for understanding laser–plasma instabilities (LPI’s)

•	 A	self-similar	model	for	LPI experiments on OMEGA 
predicts at nc/4 that

– Ln (nm) ? I1/4

– Te (keV) ?	I1/2

– Iqc ? I

•	 These	predictions	are	reproduced	by	2-D	hydro	simulations

•	 DRACO simulations further indicated that scale-length 
plasmas of Ln ~ 500 nm can be created with concave 
spherical half-shells
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Understanding and mitigating two-plasmon–decay (TPD) 
instability relies on the accurate knowledge of plasma 
conditions at nc/4

TC10610

•	 Long-scale-length	plasmas	(Ln > 400 nm), which favor 
TPD-instability growth, can be encountered in direct-
drive–ignition implosions on the NIF

•	 To	understand	the	laser-intensity	scaling	of	TPD-induced	
fast electrons, it is crucial to know the exact plasma 
conditions (Ln, Te, Iqc) at the quarter-critical density

•	 Benchmarking	the	hydro-simulated	plasma	conditions	
at nc/4 with measurements and model analyses provide 
more confidence in the TPD-instability studies



Long-scale-length plasma experiments with planar CH 
targets have been performed at the Omega Laser Facility 
using different distributed phase plates (DPP’s)*
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Two-dimensional DRACO simulations* of these 
experiments provide the basic plasma conditions
at nc/4 to understand LPI 

TC10441 *S. X. Hu et al., Phys. Plasmas 20, 032704 (2013).
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The full-aperature backscatter station (FABS) 
measurement of light reflection by the rarefaction wave 
benchmarks the DRACO-predicted hydrodynamics
of coronal plasmas

TC10613
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The Thomson-scattering measurement of the electron 
temperature at nc/4 showed good agreement with 
hydro simulations

TC10442
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The self-similar model* is used to understand
the laser-ablated slab plasma formation

TC10615

•	 Solving	the	hydrodynamic	equation	with	the	self-similar	
dimensionless coordinate p 
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The laser-intensity scaling of Ln, Te, and Iqc can be 
derived from the self-similar model solutions

TC10616

•	 The	definition	of	Ln and the equation-of-state 
(EOS) relationship of e ~ kTe
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DRACO-simulated intensity scaling of Ln is in very good 
agreement with the self-similar model prediction

TC10443 *D. Haberberger, this conference.
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DRACO-simulated intensity scaling of Te agrees 
with the self-similar model prediction

TC10444
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Both DRACO simulations and the self-similar 
model predict the linear scaling of Iqc with 
the incident intensity

TC10619
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With concave spherical half-shells, DRACO simulations 
predicted NIF-scale plasmas with even longer density 
scale lengths (Ln ~ 500 nm)

TC10620

Measurements showed ~3× higher hard x-ray signals for concave targets 
with inner illumination than outer illumination at the same intensity. 
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Summary/Conclusions

TC10609

Hydro-predicted laser-intensity scalings for producing 
NIF-scale plasmas on OMEGA have been confirmed by 
experiments and model predictions

•	 The	hydro-conditions	of	National	Ignition	Facility	(NIF)-scale 
plasmas at the quarter-critical density regime are important 
for understanding laser–plasma instabilities (LPI’s)

•	 A	self-similar	model	for	LPI experiments on OMEGA 
predicts at nc/4 that

– Ln (nm) ? I1/4

– Te (keV) ?	I1/2

– Iqc ? I

•	 These	predictions	are	reproduced	by	2-D	hydro	simulations

•	 DRACO simulations further indicated that scale-length 
plasmas of Ln ~ 500 nm can be created with concave 
spherical half-shells


